欢迎来到天天文库
浏览记录
ID:35959415
大小:7.05 MB
页数:57页
时间:2019-04-28
《全等三角形中做辅助线技巧要点大汇总》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、全等三角形中做辅助线技巧要点大汇总口诀:三角形图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。线段垂直平分线,常向两端把线连。线段和差及倍半,延长缩短可试验。线段和差不等式,移到同一三角去。三角形中两中点,连接则成中位线。三角形中有中线,延长中线等中线。一、由角平分线想到的辅助线口诀:图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。角平分线具有两条性质:a、对称性;b、角平分线上的点到角两边的距离相等。对于有角平分线的辅助线的作
2、法,一般有两种。①从角平分线上一点向两边作垂线;②利用角平分线,构造对称图形(如作法是在一侧的长边上截取短边)。通常情况下,出现了直角或是垂直等条件时,一般考虑作垂线;其它情况下考虑构造对称图形。至于选取哪种方法,要结合题目图形和已知条件。与角有关的辅助线EA(一)、截取构全等如图1-1,∠AOC=∠BOC,如取OE=OF,并连ODC接DE、DF,则有△OED≌△OFD,从而为我们证FBA图1-1明线段、角相等创造了条件。E例1.如图1-2,AB//CD,BE平分∠BCD,CE平分∠BCD,点E在AD上,求证:BC=AB+CD。例2.已知:如图BF1-3,AB=2AC,∠BAD=图1-
3、2∠CAD,DA=DB,求证DC⊥ACDC例3.已知:如图1-4,在△ABC中,∠C=2∠B,AD平分∠BAC,求证:AB-AC=CD分析:此题的条件中还有角的平分线,在证明A中还要用到构造全等三角形,此题还是证明线段的和差倍分问题。用到的是截取法来证明的,在长的E线段上截取短的线段,来证明。试试看可否把短的延长来证明呢?CBD练习图1-41.已知在△ABC中,AD平分∠BAC,∠B=2∠C,求证:AB+BD=AC2.已知:在△ABC中,∠CAB=2∠B,AE平分∠CAB交BC于E,AB=2AC,求证:AE=2CE3.已知:在△ABC中,AB>AC,AD为∠BAC的平分线,M为AD上
4、任一点。求证:BM-CM>AB-AC4.已知:D是△ABC的∠BAC的外角的平分线AD上的任一点,连接DB、DC。求证:BD+CD>AB+AC。(二)、角分线上点向角两边作垂线构全等过角平分线上一点向角两边作垂线,利用角平分线上的点到两边距离相等的性质来证明问题。A例1.如图2-1,已知AB>AD,∠BAC=∠FAC,CD=BC。求证:∠ADC+∠B=180D分析:可由C向∠BAD的两边作垂线。近而证∠ADCFE与∠B之和为平角。BC图2-1例2.如图2-2,在△ABC中,∠A=90,AB=AC,∠ABD=∠CBD。求证:BC=AB+ADA分析:过D作DE⊥BC于E,则AD=DE=CE
5、,则构造出D全等三角形,从而得证。此题是证明线段的和差倍分问题,BC从中利用了相当于截取的方法。E图2-2例3.已知如图2-3,△ABC的角平分线BM、CN相交于点P。求证:∠BAC的平分线也经过点P。A分析:连接AP,证AP平分∠BAC即可,也就是证P到AB、AC的距离相等。NMDFBPC图2-3练习:1.如图2-4∠AOP=∠BOP=15,PC//OA,PD⊥OA,BCPOAD图2-4如果PC=4,则PD=()A4B3C2D12.已知在△ABC中,∠C=90,AD平分∠CAB,CD=1.5,DB=2.5.求AC。3.已知:如图2-5,∠BAC=∠CAD,AB>AD,CE⊥AB,1
6、AAE=2(AB+AD).求证:∠D+∠B=180。D4.已知:如图2-6,在正方形ABCD中,E为CD的中点,ECBF为BC图2-5上的点,∠FAE=∠DAE。求证:AF=AD+CF。5.已知:如图2-7,在Rt△ABC中,∠ACB=90,CD⊥AB,垂足为D,AE平分∠CAB交CD于F,过F作FH//AB交BC于H。求证CF=BH。ADEB图2-6FCCEFHADB图2-7(三):作角平分线的垂线构造等腰三角形从角的一边上的一点作角平分线的垂线,使之与角的两边相交,则截得一个等腰三角形,垂足为底边上的中点,该角平分线又成为底边上的中线和高,以利用中位线的性质与等腰三角形的三线合一
7、的性质。(如果题目中有垂直于角平分线的线段,则延长该线段与角的另一边相交)。例1.已知:如图3-1,∠BAD=∠DAC,AB>AC,CD⊥AD于D,H是求证:DH=1(AB-AC)2BC中点。A分析:延长CD交AB于点E,则可得全等三角形。问题可证。DECBH图示3-1F例2.已知:如图3-2,AB=AC,∠BAC=90,AD为∠ABC的平分线,CE⊥BE.求证:BD=2CE。BADEC图3-2分析:给出了角平分线给出了边上的一点作
此文档下载收益归作者所有