基于格蕴涵代数的格值一阶逻辑l,vfl中的不确定性推理研究

基于格蕴涵代数的格值一阶逻辑l,vfl中的不确定性推理研究

ID:34769257

大小:2.56 MB

页数:120页

时间:2019-03-10

基于格蕴涵代数的格值一阶逻辑l,vfl中的不确定性推理研究_第1页
基于格蕴涵代数的格值一阶逻辑l,vfl中的不确定性推理研究_第2页
基于格蕴涵代数的格值一阶逻辑l,vfl中的不确定性推理研究_第3页
基于格蕴涵代数的格值一阶逻辑l,vfl中的不确定性推理研究_第4页
基于格蕴涵代数的格值一阶逻辑l,vfl中的不确定性推理研究_第5页
资源描述:

《基于格蕴涵代数的格值一阶逻辑l,vfl中的不确定性推理研究》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、西南交通大学博士学位论文基于格蕴涵代数的格值一阶逻辑L<,vfl>中的不确定性推理研究姓名:陈树伟申请学位级别:博士专业:交通信息工程及控制指导教师:徐扬20051201西南交通大学学位论文创新性声明本人郑重声明:所呈交的学位论文,是本人在导师指导下独立"x西南交通大学博士研究生学位论文第1页第1章绪论§1-1形成本文的学术背景当今世界已经步入信息社会,人类在日常生活中总会接触到各种各样的信息,并对这些信息进行加工、整理,从而形成推理、判断和决策.人们获取的信息中,存在大量不精确的、不完全的、或不完全可靠的信

2、息.如何较为准确地描述和应用这些不确定性信息历来受到人们的广泛重视.实际上,大量的各种各样的不确定性信息不仅存在于现实世界中,而且也自然地存在于外部信息向人脑反映的过程之中,这些不确定性包括模糊性,不可区分性、不可比较性、不完全性.不可靠性和随机性等等人们在处理不确定性信息时,经常会遇到两类不确定性:一类存在于被处理对象本身之中,另一类存在于信息处理的过程之中,后者源于前者而又远比前者复杂为处理后者。信息处理过程中的不确定性通常被分为不同的水平,然后根据需要在一个或几个水平上进行处理.迄今为止,同时处理这两类

3、不确定性的研究工作还较少.人工智能的一个基本目标是建立基于计算机的人工系统,“模拟、扩充、扩展人类的智能,并增强计算机帮助人类处理程式化工作的能力.因为人类的智能活动总是涉及到不确定性信息的处理,人工智能的一个重要任务就是研究计算机如何模拟人类处理不确定性信息,而不确定性推理是人类处理不确定性信息的方法中最基本的机制.长期以来,人们对确定性信息处理已经进行丁深入研究并且取得了大量的成果.众所周知,确定性信息的处理,特别是基于确定性信息的推理是以经典的二值逻辑为基础的.因为具有严格、完备的逻辑基础,故对于确定性

4、信息的推理有很高的可信度.相应地,建立一些合理的逻辑系统作为不确定性信息处理的逻辑基础是自然和必要的.显然,这种类型的逻辑不是二值逻辑.而是二值逻辑的发展和扩充.到目前为止,为寻找合理有效的处理不确定性的推理系统,各种各样的非经典逻辑系统已经被广泛研究.多值逻辑作为一种重要的非经典逻辑,~方面是经典逻辑的极大扩充和发展,旨在建立不确定性信息处理的逻辑基础;另一方面.它一直都是非经典逻辑的~个重要研究方向.而格值逻辑是一种重要的多值逻辑,其不仅能够刻画全序性信息,而且还可刻画非全序性(不可比较性)信息,它通过格

5、这种代数结构来西南交通大学博士研究生学位论文第3页息,其中有影响的程序为A.Newell,J.Shaw和HSimon等前后持续了十年时间在LogicTheorist基础上研究的一种不依赖于具体领域的通用问题求解程序(GPS)[82】.家系统DENDRAL,能根据质谱仪的数据推知未知有机化合物的分子结构的化学专家系统,使人工馨皋簋露魁氇晷蔷翠至嵌磊嚣般醛整骅楚踅i藩燮琵翔“钧醛髂魏0拍卧鞘#?蛔既:Ⅲ;12;lgg毒由档罂§2硝链弘时性质和结fl匈作荽至i茎薅艨葡嘹芝蚓:i!il剖;《j誉?蓦?l÷;i《a馔∞

6、哗矗。箝霪饕琵醐射霎醑芊冉瓣鑫讨论丁格=国濯卅淄时懈曩嘲疆粥;龌垂鎏嗽冯。傣圆满Ⅲ例;lj:。§§=酉演ig隅满。军连寸金r,)为一具逆序对合“,”且有泛界』是一个从三×L到工的映射.如果对任意的z,y,z∈工z-÷(g-+z)=Ⅳ_÷(z-÷z);互—}z=J:z-÷口=Ⅳ’_÷一;如果z_÷Ⅳ=Ⅳ-÷z=,,则。=v@_Ⅳ)og=白_茁)-÷z;则称(厶V,^,,,_,D,,)为拟格蕴涵代数,若其还满足:(f1)(zV9)—÷:=(。—+z)^(苕—÷z);(?2)@^y)_÷。=0_÷z)V(g_÷z)

7、.则称∞,V,^,,,-÷,0,,)为格蕴涵代数.以下若无特别声明,我们总假设(L,V,^,,,_,D,J)为一个格蕴涵代数,且简记为L.例2.1.2.f153,165】设(LV,^,,)为一布尔格,对任意的。,g∈L,定义。斗v2o’V”,153,165】设(LV,^,,)为一布尔格,对任意的。,g∈L,定义。斗v2o’V”,"x第10页西南交通大学博士研究生学位论文则(L,V,^,,,_÷)为一个格蕴涵代数.例2.1.3.[153,165]设三=[o,11,运算V,^,,,_÷分别定义如下:对任意的z,Ⅳ

8、∈L,zV可=max{z,掣),z^Ⅳ=min{z,9),z’=1一z.z-÷g=min{1,1一z+F),则(Io,1】,V,^,,,斗)是一个格蕴涵代数,称为[o,1】上的Lulcasiewicz蕴涵代数.例2.1.4.[153,165】令£={毗li=1,2,⋯,礼).对任意的1≤工☆≤n,定义qVo^=Ⅱma】cD,埘,q^ok2nmin{,,t),(q)’=n。一J+1,q-÷n^=nmi

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。