欢迎来到天天文库
浏览记录
ID:34568475
大小:185.90 KB
页数:14页
时间:2019-03-08
《仿生算法小结》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、PSO粒子群优化算法1.引言粒子群优化算法(PSO)是一种进化计算技术(evolutionarycomputation),由Eberhart博士和kennedy博士发明。源于对鸟群捕食的行为研究PSO同遗传算法类似,是一种基于迭代的优化工具。系统初始化为一组随机解,通过迭代搜寻最优值。但是并没有遗传算法用的交叉(crossover)以及变异(mutation)。而是粒子在解空间追随最优的粒子进行搜索。详细的步骤以后的章节介绍同遗传算法比较,PSO的优势在于简单容易实现并且没有许多参数需要调整。目前已广泛应用于函数优化,神经网络训练,
2、模糊系统控制以及其他遗传算法的应用领域2.背景:人工生命"人工生命"是来研究具有某些生命基本特征的人工系统.人工生命包括两方面的内容1.研究如何利用计算技术研究生物现象2.研究如何利用生物技术研究计算问题我们现在关注的是第二部分的内容.现在已经有很多源于生物现象的计算技巧.例如,人工神经网络是简化的大脑模型.遗传算法是模拟基因进化过程的.现在我们讨论另一种生物系统-社会系统.更确切的是,在由简单个体组成的群落与环境以及个体之间的互动行为.也可称做"群智能"(swarmintelligence).这些模拟系统利用局部信息从而可能产生不
3、可预测的群体行为例如floys和boids,他们都用来模拟鱼群和鸟群的运动规律,主要用于计算机视觉和计算机辅助设计.在计算智能(computationalintelligence)领域有两种基于群智能的算法.蚁群算法(antcolonyoptimization)和粒子群算法(particleswarmoptimization).前者是对蚂蚁群落食物采集过程的模拟.已经成功运用在很多离散优化问题上.粒子群优化算法(PSO)也是起源对简单社会系统的模拟.最初设想是模拟鸟群觅食的过程.但后来发现PSO是一种很好的优化工具.3.算法介绍如前
4、所述,PSO模拟鸟群的捕食行为。设想这样一个场景:一群鸟在随机搜索食物。在这个区域里只有一块食物。所有的鸟都不知道食物在那里。但是他们知道当前的位置离食物还有多远。那么找到食物的最优策略是什么呢。最简单有效的就是搜寻目前离食物最近的鸟的周围区域。PSO从这种模型中得到启示并用于解决优化问题。PSO中,每个优化问题的解都是搜索空间中的一只鸟。我们称之为“粒子”。所有的例子都有一个由被优化的函数决定的适应值(fitnessvalue),每个粒子还有一个速度决定他们飞翔的方向和距离。然后粒子们就追随当前的最优粒子在解空间中搜索PSO初始化
5、为一群随机粒子(随机解)。然后通过叠代找到最优解。在每一次叠代中,粒子通过跟踪两个"极值"来更新自己。第一个就是粒子本身所找到的最优解。这个解叫做个体极值pBest.另一个极值是整个种群目前找到的最优解。这个极值是全局极值gBest。另外也可以不用整个种群而只是用其中一部分最为粒子的邻居,那么在所有邻居中的极值就是局部极值。程序的伪代码如下Foreachparticle____InitializeparticleENDDo____Foreachparticle________Calculatefitnessvalue________
6、Ifthefitnessvalueisbetterthanthebestfitnessvalue(pBest)inhistory____________setcurrentvalueasthenewpBest____End____ChoosetheparticlewiththebestfitnessvalueofalltheparticlesasthegBest____Foreachparticle________Calculateparticlevelocityaccordingequation(a)________Updatep
7、articlepositionaccordingequation(b)____EndWhilemaximumiterationsorminimumerrorcriteriaisnotattained在每一维粒子的速度都会被限制在一个最大速度Vmax,如果某一维更新后的速度超过用户设定的Vmax,那么这一维的速度就被限定为Vmax4.遗传算法和PSO的比较大多数演化计算技术都是用同样的过程1.种群随机初始化2.对种群内的每一个个体计算适应值(fitnessvalue).适应值与最优解的距离直接有关3.种群根据适应值进行复制4.如果终止
8、条件满足的话,就停止,否则转步骤2从以上步骤,我们可以看到PSO和GA有很多共同之处。两者都随机初始化种群,而且都使用适应值来评价系统,而且都根据适应值来进行一定的随机搜索。两个系统都不是保证一定找到最优解但是,PSO没有遗传操作如交
此文档下载收益归作者所有