欢迎来到天天文库
浏览记录
ID:33506426
大小:1.16 MB
页数:15页
时间:2019-02-26
《大数据分析案例》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、更多企业商业智能BI信息化相关信息获取http://www.finereport.com/http://www.finebi.com/大数据分析案例一:大数据分析在商业上的应用1、体育赛事预测世界杯期间,谷歌、百度、微软和高盛等公司都推出了比赛结果预测平台。百度预测结果最为亮眼,预测全程64场比赛,准确率为67%,进入淘汰赛后准确率为94%。现在互联网公司取代章鱼保罗试水赛事预测也意味着未来的体育赛事会被大数据预测所掌控。“在百度对世界杯的预测中,我们一共考虑了团队实力、主场优势、最近表现、世界杯整
2、体表现和博彩公司的赔率等五个因素,这些数据的来源基本都是互联网,随后我们再利用一个由搜索专家设计的机器学习模型来对这些数据进行汇总和分析,进而做出预测结果。”---百度北京大数据实验室的负责人张桐2、股票市场预测去年英国华威商学院和美国波士顿大学物理系的研究发现,用户通过谷歌搜索的金融关键词或许可以金融市场的走向,相应的投资战略收益高达326%。此前则有专家尝试通过Twitter博文情绪来预测股市波动。理论上来讲股市预测更加适合美国。中国股票市场无法做到双向盈利,只有股票涨才能盈利,这会吸引一些游资
3、利用信息不对称等情况人为改变股票市场规律,因此中国股市没有相对稳定的规律则很难被预测,且一些对结果产生决定性影响的变量数据根本无法被监控。和传统量化投资类似,大数据投资也是依靠模型,但模型里的数据变量几何倍地增加了,在原有的金融结构化数据基础上,增加了社交言论、地理信息、卫星监测等非结构化数据,更多企业商业智能BI信息化相关信息获取http://www.finereport.com/http://www.finebi.com/并且将这些非结构化数据进行量化,从而让模型可以吸收。由于大数据模型对成本要
4、求极高,业内人士认为,大数据将成为共享平台化的服务,数据和技术相当于食材和锅,基金经理和分析师可以通过平台制作自己的策略。3、市场物价预测CPI表征已经发生的物价浮动情况,但统计局数据并不权威。但大数据则可能帮助人们了解未来物价走向,提前预知通货膨胀或经济危机。最典型的案例莫过于马云通过阿里B2B大数据提前知晓亚洲金融危机,当然这是阿里数据团队的功劳。4、用户行为预测基于用户搜索行为、浏览行为、评论历史和个人资料等数据,互联网业务可以洞察消费者的整体需求,进而进行针对性的产品生产、改进和营销。《纸牌
5、屋》选择演员和剧情、百度基于用户喜好进行精准广告营销、阿里根据天猫用户特征包下生产线定制产品、亚马逊预测用户点击行为提前发货均是受益于互联网用户行为预测。购买前的行为信息,可以深度地反映出潜在客户的购买心理和购买意向:例如,客户A连续浏览了5款电视机,其中4款来自国内品牌S,1款来自国外品牌T;4款为LED技术,1款为LCD技术;5款的价格分别为4599元、5199元、5499元、5999元、7999元;这些行为某种程度上反映了客户A对品牌认可度及倾向性,如偏向国产品牌、中等价位的LED电视。而客户
6、B连续浏览了6款电视机,其中2款是国外品牌T,2款是另一国外品牌V,2款是国产品牌S;4款为LED技术,2款为LCD技术;6款的价格分别为5999元、7999元、8300元、9200元、9999元、11050元;类似地,这些行为某种程度上反映了客户B对品牌认可度及倾向性,如偏向进口品牌、高价位的LED电视等。更多企业商业智能BI信息化相关信息获取http://www.finereport.com/http://www.finebi.com/5、人体健康预测中医可以通过望闻问切手段发现一些人体内隐藏的
7、慢性病,甚至看体质便可知晓一个人将来可能会出现什么症状。人体体征变化有一定规律,而慢性病发生前人体已经会有一些持续性异常。理论上来说,如果大数据掌握了这样的异常情况,便可以进行慢性病预测。6、疾病疫情预测基于人们的搜索情况、购物行为预测大面积疫情爆发的可能性,最经典的“流感预测”便属于此类。如果来自某个区域的“流感”、“板蓝根”搜索需求越来越多,自然可以推测该处有流感趋势。Google成功预测冬季流感:2009年,Google通过分析5000万条美国人最频繁检索的词汇,将之和美国疾病中心在2003年
8、到2008年间季节性流感传播时期的数据进行比较,并建立一个特定的数学模型。最终google成功预测了2009冬季流感的传播甚至可以具体到特定的地区和州。7、灾害灾难预测气象预测是最典型的灾难灾害预测。地震、洪涝、高温、暴雨这些自然灾害如果可以利用大数据能力进行更加提前的预测和告知便有助于减灾防灾救灾赈灾。与过往不同的是,过去的数据收集方式存在着死角、成本高等问题,物联网时代可以借助廉价的传感器摄像头和无线通信网络,进行实时的数据监控收集,再利用大数据预测分析,做到更精
此文档下载收益归作者所有