高中数学第1章导数及其应用章末分层突破学案新人教b版选修2_2

高中数学第1章导数及其应用章末分层突破学案新人教b版选修2_2

ID:31227114

大小:510.50 KB

页数:19页

时间:2019-01-07

高中数学第1章导数及其应用章末分层突破学案新人教b版选修2_2_第1页
高中数学第1章导数及其应用章末分层突破学案新人教b版选修2_2_第2页
高中数学第1章导数及其应用章末分层突破学案新人教b版选修2_2_第3页
高中数学第1章导数及其应用章末分层突破学案新人教b版选修2_2_第4页
高中数学第1章导数及其应用章末分层突破学案新人教b版选修2_2_第5页
资源描述:

《高中数学第1章导数及其应用章末分层突破学案新人教b版选修2_2》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、一岗双责落实还不到位。受事务性工作影响,对分管单位一岗双责常常落实在安排部署上、口头要求上,实际督导、检查的少,指导、推进、检查还不到位。章末分层突破[自我校对]①导数及其应用 ②导数的运算③曲线的切线斜率 ④导数的四则运算 ⑤函数的单调性 ⑥曲线的切线 ⑦最优化问题 ⑧曲边梯形的面积 ⑨微积分基本定理的应用 导数的几何意义及其应用利用导数的几何意义求切线方程时关键是搞清所给的点是不是切点,常见的类型有两种,一是求“在某点处的切线方程”,则此点一定为切点,先求导,再求斜率代入直线方程即可得;另一

2、类是求“过某点的切线方程”,这种类型中的点不一定是切点,可先设切点为Q(x1,y1),则切线方程为y-y1=f′(x1)(x-x1),再由切线过点P(x0,y0)得y0-y1=f′(x1)(x0-x1),①又y1=f(x1),②对分管部门的党风廉政建设抓得不够紧,找问题的多,批评教育的少,放松了对分管部门的日常监督、管理和教育。对分管部门干部发现的一些违规违纪小错提醒不够、批评教育不力,监督执纪“四种形态”作用发挥不够一岗双责落实还不到位。受事务性工作影响,对分管单位一岗双责常常落实在安排部署上

3、、口头要求上,实际督导、检查的少,指导、推进、检查还不到位。由①②求出x1,y1的值,即求出了过点P(x0,y0)的切线方程. (1)曲线y=xex-1在点(1,1)处切线的斜率等于(  )A.2e        B.eC.2D.1(2)已知函数y=f(x)的图象是下列四个图象之一,且其导函数y=f′(x)的图象如图11所示,则该函数的图象是(  )【导学号:05410035】图11【精彩点拨】 (1)曲线在点(1,1)处的切线斜率即为该点处的导数.(2)由导数值的大小变化,确定原函数的变化情况

4、,从而得出结论.【规范解答】 (1)y′=ex-1+xex-1=(x+1)ex-1,故曲线在点(1,1)处的切线斜率为k=2.(2)从导函数的图象可以看出,导函数值先增大后减小,x=0时最大,所以函数f(x)的图象的变化率也先增大后减小,在x=0时变化率最大.A项,在x=0时变化率最小,故错误;C项,变化率是越来越大的,故错误;D项,变化率是越来越小的,故错误;B项正确.【答案】 (1)C (2)B[再练一题]1.已知曲线y=x3+.(1)求曲线在点P(2,4)处的切线方程;(2)求曲线过点P(

5、2,4)的切线方程;(3)求斜率为4的曲线的切线方程.对分管部门的党风廉政建设抓得不够紧,找问题的多,批评教育的少,放松了对分管部门的日常监督、管理和教育。对分管部门干部发现的一些违规违纪小错提醒不够、批评教育不力,监督执纪“四种形态”作用发挥不够一岗双责落实还不到位。受事务性工作影响,对分管单位一岗双责常常落实在安排部署上、口头要求上,实际督导、检查的少,指导、推进、检查还不到位。【解】 (1)∵P(2,4)在曲线y=x3+上,且y′=x2,∴在点P(2,4)处的切线的斜率k=4.∴曲线在点P

6、(2,4)处的切线方程为y-4=4(x-2),即4x-y-4=0.(2)设曲线y=x3+与过点P(2,4)的切线相切于点A,则切线的斜率k=x.∴切线方程为y-=x(x-x0),即y=x·x-x+.∵点P(2,4)在切线上,∴4=2x-x+,即x-3x+4=0,∴x+x-4x+4=0.∴x(x0+1)-4(x0+1)(x0-1)=0,∴(x0+1)(x0-2)2=0,解得x0=-1或x0=2,故所求的切线方程为4x-y-4=0或x-y+2=0.(3)设切点为(x0,y0),则切线的斜率k=x=4

7、,∴x0=±2.∴切点为(2,4)或.∴斜率为4的曲线的切线方程为y-4=4(x-2)和y+=4(x+2),即4x-y-4=0和12x-3y+20=0.利用导数判断函数的单调性利用导数的符号判断函数的增减性,进而确定函数的单调区间,这是导数的几何意义在研究曲线变化规律时的一个应用,它充分体现了数形结合思想.这部分内容要注意的是f(x)为增函数⇔f′(x)≥0且f′(x)=0的根有有限个,f(x)为减函数⇔f′(x)≤0且f′(x)=0的根有有限个. (2016·北京高考)设函数f(x)=xea-

8、x+bx,曲线y=f(x)在点(2,f(2))处的切线方程为y=(e-1)x+4.(1)求a,b的值;(2)求f(x)的单调区间.【精彩点拨】 (1)利用导数的几何意义和求导运算建立方程组求未知数.(2)利用导数与函数单调性的关系判断函数的单调性.【规范解答】 (1)因为f(x)=xea-x+bx,对分管部门的党风廉政建设抓得不够紧,找问题的多,批评教育的少,放松了对分管部门的日常监督、管理和教育。对分管部门干部发现的一些违规违纪小错提醒不够、批评教育不力,监督执纪“四种形态”作用发挥不够一岗双

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。