欢迎来到天天文库
浏览记录
ID:30502466
大小:101.50 KB
页数:3页
时间:2018-12-30
《探索勾股定理测试卷姓名_》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、探索勾股定理测试卷姓名_________(满分:100分时间:45分钟)成绩_______________一.选择题(每题3分)4图145°1、如图1,图中有一个正方形,此正方形的面积是()A.16B.8C.4D.22、小强量得家里新购置的彩电荧光屏的长为58厘米,宽为46厘米,则这台电视机的尺寸是(实际测量的误差可不计)()A.9英寸(23厘米)B.21英寸(54厘米)C.29英寸(74厘米)D.34英寸(87厘米)3、等腰三角形底边上的高为8,周长为32,则三角形的面积为______________A5
2、6B48C40D3214、如果Rt△的两直角边长分别为n2-1,2n(n>1),那么它的斜边长是____________A2nBn+1Cn2-1Dn2+15.直角三角形一直角边长为12,另两条边长均为自然数,则其周长为(). A30B28C56D不能确定6.已知一个Rt△的两边长分别为3和4,则第三边长的平方是( )A25B14C7D7或257.等腰三角形的腰长为10,底长为12,则其底边上的高为() A13B8C25D648、一架4.1m长的梯子斜靠在一竖直的墙上,这时梯足距墙脚0.9m.那么梯子的顶端
3、与地面的距离是( )A.3.2mB.4.0mC.4.1mD.5.0mABEFDC9、已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为________A6cm2B8cm2C10cm2D12cm2北南A东10、已知,如图,一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后,则两船相距_________A25海里B30海里C35海里D40海里二、填空题(每题6分
4、)11、在Rt△ABC中,∠C=90°,①若a=5,b=12,则c=___________;②若a=15,c=25,则b=___________;③若c=61,b=60,则a=__________;④若a∶b=3∶4,c=10则SRt△ABC=________12、如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达点B200m,结果他在水中实际游了520m,求该河流的宽度为________m313、将一根长为15㎝的筷子置于底面直径为5㎝,高为12㎝的圆柱形水杯中,设筷子露在杯子外面的长为h㎝
5、,则h的取值范围是_______________ABCD7cm14、如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边和长为7cm,则正方形A,B,C,D的面积之和为___________cm2。15、在一棵树的10米高处有两只猴子,一只猴子爬下树走到离树20米处的池塘的A处。另一只爬到树顶D后直接跃到A处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高____________米。三、解答题(每题10分)16.如图2,要修建一个育苗棚,棚高h=1.8m,棚宽a=2.4m
6、,棚的长为12m,现要在棚顶上覆盖塑料薄膜,试求需要多少平方米塑料薄膜?ABCD17、已知,如图,四边形ABCD中,AB=3cm,AD=4cm,BC=13cm,CD=12cm,且∠A=90°,求四边形ABCD的面积。18.如图3,已知长方形ABCD中AB=8cm,BC=10cm,在边CD上取一点E,将△ADE折叠使点D恰好落在BC边上的点F,求CE的长.193、如图1,是用硬纸板做成的两个全等的直角三角形,两直角边的长分别为a和b,斜边长为c;如图2是以c为直角变的等腰直角三角形,请你开动脑筋,将它们拼成一
7、个能证明勾股定理的图形。画出拼成的这个图形的示意图,写出它的名称;用这个图形证明勾股定理;设图1中的直角三角形由若干个,你能运用图1中所给的直角三角形拼出另外一种能证明勾股定理的图形吗?请画出拼成后的示意图。(无需证明)cccbacba图1图2试题难度一般,中等水平的学生大部分试题可以独立完成。但是还是出现了一些问题,学生对于勾股定理的印象停留在公式上,而其本质内容“直角三角形两直角边的平方和等于斜边的平方”往往会被学生所忽略。有些同学不能很好的把图形和公式结合起来应用。如何解决这个难题,使学生在牢记公式表
8、达式的同时领会勾股定理真正的含义,我陷入苦思当中。我反复思考,参考其他老师的意见,最后发现了问题的关键。这个问题产生的原因主要在于我们教师在教学过程中,对于公式的重视往往超过对于文字叙述的重视,而学生对于使用方便的公式自然也是记忆深刻。公式表示虽然简便,但是由于已经简化为符号表示,所以学生往往是记住了公式,却不知道那些符号背后真正的含义。所以要改进自己的教学在熟练掌握公式的同时,更要熟知勾股定理的本质内容,同时要
此文档下载收益归作者所有