欢迎来到天天文库
浏览记录
ID:30381682
大小:95.30 KB
页数:14页
时间:2018-12-29
《《转载曲面造型》word版》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、转载曲面造型原文地址:曲面造型作者:经和主曲面造型曲面造型(SurfaceModeling)是计算机辅助几何设计(ComputerAidedGeometricDesign,CAGD)和计算机图形学(ComputerGraphics)的一项重要内容,主要研究在计算机图象系统的环境下对曲面的表示、设计、显示和分析。它起源于汽车、飞机、船舶、叶轮等的外形放样工艺,由Coons、Bezier等大师于二十世纪六十年代奠定其理论基础。如今经过三十多年的发展,曲面造型现在已形成了以有理B样条曲面(RationalB-splineSurface)参数化特征设计和隐式代数曲面(ImplicitAlgeb
2、raicSurface)表示这两类方法为主体,以插值(Interpolation)、拟合(Fitting)、逼近(Approximation)这三种手段为骨架的几何理论体系。转载曲面造型原文地址:曲面造型作者:经和主曲面造型曲面造型(SurfaceModeling)是计算机辅助几何设计(ComputerAidedGeometricDesign,CAGD)和计算机图形学(ComputerGraphics)的一项重要内容,主要研究在计算机图象系统的环境下对曲面的表示、设计、显示和分析。它起源于汽车、飞机、船舶、叶轮等的外形放样工艺,由Coons、Bezier等大师于二十世纪六十年代奠定其理
3、论基础。如今经过三十多年的发展,曲面造型现在已形成了以有理B样条曲面(RationalB-splineSurface)参数化特征设计和隐式代数曲面(ImplicitAlgebraicSurface)表示这两类方法为主体,以插值(Interpolation)、拟合(Fitting)、逼近(Approximation)这三种手段为骨架的几何理论体系。转载曲面造型原文地址:曲面造型作者:经和主曲面造型曲面造型(SurfaceModeling)是计算机辅助几何设计(ComputerAidedGeometricDesign,CAGD)和计算机图形学(ComputerGraphics)的一项重要内
4、容,主要研究在计算机图象系统的环境下对曲面的表示、设计、显示和分析。它起源于汽车、飞机、船舶、叶轮等的外形放样工艺,由Coons、Bezier等大师于二十世纪六十年代奠定其理论基础。如今经过三十多年的发展,曲面造型现在已形成了以有理B样条曲面(RationalB-splineSurface)参数化特征设计和隐式代数曲面(ImplicitAlgebraicSurface)表示这两类方法为主体,以插值(Interpolation)、拟合(Fitting)、逼近(Approximation)这三种手段为骨架的几何理论体系。1.对曲面造型的简要回顾形状信息的核心问题是计算机表示,即要解决既适合
5、计算机处理,且有效地满足形状表示与几何设计要求,又便于形状信息传递和产品数据交换的形状描述的数学方法。1963年美国波音飞机公司的Ferguson首先提出将曲线曲面表示为参数的矢函数方法,并引入参数三次曲线。从此曲线曲面的参数化形式成为形状数学描述的标准形式。1964年美国麻省理工学院的Coons发表一种具有一般性的曲面描述方法,给定围成封闭曲线的四条边界就可定义一块曲面。但这种方法存在形状控制与连接问题。1971年法国雷诺汽车公司的Bezier提出一种由控制多边形设计曲线的新方法。这种方法不仅简单易用,而且漂亮地解决了整体形状控制问题,把曲线曲面的设计向前推进了一大步,为曲面造型的进
6、一步发展奠定了坚实的基础。但Bezier方法仍存在连接问题和局部修改问题。到1972年,de-Boor总结、给出了关于B样条的一套标准算法,1974年Gordon和Riesenfeld又把B样条理论应用于形状描述,最终提出了B样条方法。这种方法继承了Bezier方法的一切优点,克服了Bezier方法存在的缺点,较成功地解决了局部控制问题,又轻而易举地在参数连续性基础上解决了连接问题,从而使自由型曲线曲面形状的描述问题得到较好解决。但随着生产的发展,B样条方法显示出明显不足枣不能精确表示圆锥截线及初等解析曲面,这就造成了产品几何定义的不唯一,使曲线曲面没有统一的数学描述形式,容易造成生产
7、管理混乱。为了满足工业界进一步的要求,1975年美国Syracuse大学的Versprille首次提出有理B样条方法。后来由于Piegl和Tiller等人的功绩,终于使非均匀有理B样条(NURBS)方法成为现代曲面造型中最为广泛流行的技术。NURBS方法的提出和广泛流行是生产发展的必然结果。NURBS方法的突出优点是:可以精确地表示二次规则曲线曲面,从而能用统一的数学形式表示规则曲面与自由曲面,而其它非有理方法无法做到这一点;具有可影响曲线曲面
此文档下载收益归作者所有