欢迎来到天天文库
浏览记录
ID:30314191
大小:141.50 KB
页数:10页
时间:2018-12-28
《数学建模-药物浓度与药效地研究》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、实用标准文案数学建模论文论文课题:服药时间间隔对药物疗效的影响日期:2010.4.19精彩文档实用标准文案服药时间间隔对药物疗效的影响一.问题摘要通常病人每日用药剂量及次数是根据科学研究由生产厂家严格规定的,目的是使药物在人体内保持一个相对稳定的治疗浓度。然而生活中,人们常会由于种种原因忘记按时服药。有人干脆略过不吃;有人却想“亡羊补牢”,就一次服用双份剂量的药物,以此补上漏吃的。甚至于有人急于治好病,就盲目增加服药次数,缩短服药间隔时间。其实这些做法是不科学的。药效与药物浓度在特定情况下成一定函数关系,可表示为E=f(C)。漏服或服药时间间期太短,均不利于药效的发挥。那么药物浓度
2、与药效有怎样的关系呢?服药时间间隔又是如何影响药效的呢?注:问题改编自:吉林日报《药物漏服需慎补体内药物浓度过高有副作用》2010.01.27二.问题分析及补充1.药物浓度变化指数模型患者服药后,随时间推移,药品在体内逐渐被吸收,体内药品浓度降低的速率与体内当时药品的浓度成正比.当服药量为A,初始药物浓度为a,服药间隔为T,体内药的浓度随时间的变化规律分析:浓度方程:满足条件:解得:在内,方程的解为在,方程的解为……在,方程的解为由于精彩文档实用标准文案由此看出,在等间隔服药的情况下,药物的浓度在人体中呈上升趋势,且最后会稳定在一定的水平。浓度变化曲线如图示:(其中原方程解中:K=
3、0.1,A=0.1;T=8)注:解题及编程参考自《数学建模》,西安交通大学出版社1.体内药物浓度与药效函数关系的几个简单模型2.1 线性模型浓度和在一定范围内的效应的关系的最简单模型:E=b*Cp+E0 (1) E为效应程度,Cp为药物浓度,b为直线斜率,E0为给药前效应值。 在许多情况下,用此简单的线性模型还是有价值的,但此模型只能够预报20%~80%之间的药物效应,预测高于80%的Emax或低于20%的Emax的效应时,将发生较大偏差。2.2 最大效应模型(Emax模型) 此模型适用于药物效应随浓度呈饱和曲线增加的情形.即为Emax模型,当药物不存在时,无药理效应.
4、当药物浓度接近于某一极限水平时,再增加浓度,效应增加很有限。 (2) Emax为药物引起的最大效应,EC50为产生50%Emax时的药物浓度。此方程在形式上和米氏方程一样。此模型可描述较宽范围内浓度和效应的关系。符合临床观察和受体动力学实验结果。因为当药物浓度接近至一定量再增加浓度,效应增加很少或不再增加。 若为激动效应,式(2)可转化为精彩文档实用标准文案 (3) 若为抑制效应,则 (4)注:模型资料来源于中国临床药理学杂志2000年第4期第16卷《药代动力学药效学结合模型的研究进展》作者:罗建平 张银娣一.建立模型(以下模型以药物浓度变化指数模型为基
5、础)3.1药物浓度与时间关系简化的指数模型:改变“药物浓度变化指数模型”中服药时间间隔条件在药物浓度变化指数模型中,药物浓度变化与药物浓度之间关系:解得:若已知体内药物浓度x(t)为C~D时(CT1);第一次服药:;Tn=T1+(n-1)T0(n=1,2,3,4…)如此简化后,可知除此服药量应设计为A=D-C;第一次与第二次服药间隔;t>T1后,服药间隔如此可保持药物浓度始终保持在药效最佳范围内,但初次服药与第二次的时间间隔应不同于以后的,后面的服药仍需按时间间隔Tn
6、服药以达到最佳药效。可见推迟服药或增加服药次数均会使药效降低。3.2 浓度与药效关系线性模型精彩文档实用标准文案浓度和在一定范围内的效应的关系的最简单模型(此模型只能够预报20%~80%之间的药物效应,则时间不能过长):(1)(2)(3)E为效应程度,x(t)为药物浓度,b为直线斜率,E0为给药前效应值,t=0之前E为0。方程的解为在内,方程的解为在,方程的解为在,方程的解为……在,方程的解为由解可见,由于药效的叠加,在服药时间间隔不变的情况下,服药次数越多,疗效越大,但考虑到该模型的精确度,我们一般只考虑在前三个周期的药效与时间关系。3.3 最大效应模型(Emax模型)此模型适用
7、于药物效应随浓度呈饱和曲线增加的情形: Emax为药物引起的最大效应,EC50为产生50%Emax时的药物浓度,C为药物浓度。带入浓度随时间变化的表达式: 精彩文档实用标准文案t->∞时, 药物疗效最大只能为Emax,无论药物浓度多大。 一.数学工具求解4.1简化的指数模型Matlab编程及结果x=0;D=0.3C=0.2A=D-Ck=0.2;xx=[];T0=1/k*log(D/C)T1=1/k*log(C/(D-C))forn=0:1:20ifn<1fo
此文档下载收益归作者所有