资源描述:
《2019年高考数学一轮复习 高考大题专项练4 高考中的立体几何》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、高考大题专项练四 高考中的立体几何1.如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(1)证明:PB∥平面AEC;(2)设AP=1,AD=,三棱锥P-ABD的体积V=,求点A到平面PBC的距离.2.如图,四棱锥P-ABCD,侧面PAD是边长为2的正三角形,且与底面垂直,底面ABCD是∠ABC=60°的菱形,M为PC的中点.(1)求证:PC⊥AD;(2)证明在PB上存在一点Q,使得A,Q,M,D四点共面;(3)求点D到平面PAM的距离.3.如图所示,△ABC为正三角形,CE⊥平面ABC,BD∥CE,CE=CA=2BD,M是EA的中点.求证:(1)DE=DA.
2、(2)平面BDM⊥平面ECA.4.如图,在底面是菱形的四棱柱ABCD-A1B1C1D1中,∠ABC=60°,AA1=AC=2,A1B=A1D=2,点E在A1D上.(1)证明:AA1⊥平面ABCD;(2)当为何值时,A1B∥平面EAC,并求出此时三棱锥D-AEC的体积.5.(2017山东,文18)由四棱柱ABCD-A1B1C1D1截去三棱锥C1-B1CD1后得到的几何体如图所示.四边形ABCD为正方形,O为AC与BD的交点,E为AD的中点,A1E⊥平面ABCD.(1)证明:A1O∥平面B1CD1;(2)设M是OD的中点,证明:平面A1EM⊥平面B1CD1.6.如图,已知正三棱锥P-ABC的侧面是
3、直角三角形,PA=6.顶点P在平面ABC内的正投影为点D,D在平面PAB内的正投影为点E,连结PE并延长交AB于点G.(1)证明:G是AB的中点;(2)在图中作出点E在平面PAC内的正投影F(说明作法及理由),并求四面体PDEF的体积.7.(2017天津,文17)如图,在四棱锥P-ABCD中,AD⊥平面PDC,AD∥BC,PD⊥PB,AD=1,BC=3,CD=4,PD=2.(1)求异面直线AP与BC所成角的余弦值;(2)求证:PD⊥平面PBC;(3)求直线AB与平面PBC所成角的正弦值.参考答案高考大题专项练四 高考中的立体几何1.(1)证明设BD与AC的交点为O,连接EO.因为四边形ABCD
4、为矩形,所以O为BD的中点.又E为PD的中点,所以EO∥PB.又EO⊂平面AEC,PB⊄平面AEC,所以PB∥平面AEC.(2)解V=PA·AB·AD=AB,由V=,可得AB=.作AH⊥PB交PB于H,由题设知BC⊥平面PAB,所以BC⊥AH.故AH⊥平面PBC.又AH=.所以点A到平面PBC的距离为.2.(1)证法一取AD中点O,连接OP,OC,AC,依题意可知△PAD,△ACD均为正三角形,所以OC⊥AD,OP⊥AD.又OC∩OP=O,OC⊂平面POC,OP⊂平面POC,所以AD⊥平面POC.又PC⊂平面POC,所以PC⊥AD.证法二连接AC,依题意可知△PAD,△ACD均为正三角形,又M
5、为PC的中点,所以AM⊥PC,DM⊥PC.又AM∩DM=M,AM⊂平面AMD,DM⊂平面AMD,所以PC⊥平面AMD.又AD⊂平面AMD,所以PC⊥AD.(2)证明当点Q为棱PB的中点时,A,Q,M,D四点共面,证明如下:取棱PB的中点Q,连接QM,QA,又M为PC的中点,所以QM∥BC,在菱形ABCD中AD∥BC,所以QM∥AD,所以A,Q,M,D四点共面.(3)解点D到平面PAM的距离即点D到平面PAC的距离,由(1)可知PO⊥AD,又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,PO⊂平面PAD,所以PO⊥平面ABCD,即PO为三棱锥P-ACD的体高.在Rt△POC中,PO=
6、OC=,PC=,在△PAC中,PA=AC=2,PC=,边PC上的高AM=,所以△PAC的面积S△PAC=PC·AM=,设点D到平面PAC的距离为h,由VD-PAC=VP-ACD,得S△PAC·h=S△ACD·PO,又S△ACD=×22=,所以·h=,解得h=,所以点D到平面PAM的距离为.3.证明(1)取CE的中点F,连接DF.∵CE⊥平面ABC,∴CE⊥BC.∵BD∥CE,BD=CE=CF=FE,∴四边形FCBD是矩形,∴DF⊥EC.又BA=BC=DF,∴Rt△DEF≌Rt△ADB,∴DE=DA.(2)取AC中点N,连接MN,NB,∵M是EA的中点,∴MN?CE.由BD?CE,且BD⊥平面A
7、BC,可得四边形MNBD是矩形,于是DM⊥MN.∵DE=DA,M是EA的中点,∴DM⊥EA.又EA∩MN=M,∴DM⊥平面ECA,而DM⊂平面BDM,∴平面BDM⊥平面ECA.4.(1)证明因为底面ABCD是菱形,∠ABC=60°,所以AB=AD=AC=2.在△AA1B中,由A+AB2=A1B2,知AA1⊥AB.同理,AA1⊥AD.又因为AB∩AD于点A,所以AA1⊥平面ABCD.(2)解当=1时