函数与导数(含答案

函数与导数(含答案

ID:29747653

大小:591.00 KB

页数:12页

时间:2018-12-23

函数与导数(含答案_第1页
函数与导数(含答案_第2页
函数与导数(含答案_第3页
函数与导数(含答案_第4页
函数与导数(含答案_第5页
资源描述:

《函数与导数(含答案》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、函数与导数学校:___________姓名:___________班级:___________考号:___________1.在区间上不是增函数的是()A.B.C.D.2.已知函数的定义域为,,则()A.B.C.D.3.为了得到函数的图象,可以把函数的图象上所有的点()A.向右平行移动2个单位长度B.向右平行移动个单位长度C.向左平行移动2个单位长度D.向左平行移动个单位长度4.已知函数是R上的可导函数,当时,有,则函数的零点个数是()A.0B.1C.2D.35.()A.0B.1C.2D.46.如图,点从点出发,分别按逆时针方向沿周长均为的正三角形、正方形运动一周,两点连线的距离与点走过的路

2、程的函数关系分别记为,定义函数对于函数,下列结论正确的个数是()OPOPOO①;②函数的图像关于直线对称;③函数值域为;④函数在区间上单调递增.A.1B.2C.3D.4试卷第3页,总3页7.如果偶函数在上是增函数且最小值是2,那么在上是()A.减函数且最小值是B.减函数且最大值是C.增函数且最小值是D.增函数且最大值是8.已知函数的两个极值点分别为,且,,点表示的平面区域为,若函数的图像上存在区域内的点,则实数的取值范围是(  )A.B.C.D.9.计算:.10.的单调减区间是.11.函数的定义域为________.12.计算:=.13.若函数的图像经过(0,1)点,则函数的反函数的图像必经

3、过点.14.已知函数过点.(1)求实数;(2)将函数的图像向下平移1个单位,再向右平移个单位后得到函数图像,设函数关于轴对称的函数为,试求的解析式;(3)对于定义在上的函数,若在其定义域内,不等式恒成立,求实数的取值范围.15.已知函数(1)解不等式(2)若.求证:.16.设函数解不等式;(4分)事实上:对于有成立,当且仅当时取等号.由此结论证明:试卷第3页,总3页.(6分)17.已知函数,其中为常数,为自然对数的底数.(1)求的单调区间;(2)若,且在区间上的最大值为,求的值;(3)当时,试证明:.18.已知函数(1)解不等式;(2)对于任意的,不等式恒成立,求的取值范围.19.已知函数(

4、Ⅰ)若在上为增函数,求实数的取值范围;(Ⅱ)当时,方程有实根,求实数的最大值.试卷第3页,总3页本卷由【在线组卷网www.zujuan.com】自动生成,请仔细校对后使用,答案仅供参考。参考答案1.C【解析】试题分析:由初等函数的图像可知C的图像在上是单调递减函数.考点:本题考查初等函数,通过初等函数的图像判断其单调性.2.C【解析】试题分析:∵,∴,选C.考点:1、函数的定义域;2、集合的运算.3.B【解析】试题分析:因为,所以只需将函数的图象上所有的点向右平移一个单位即可得到的图像(注意变换的只是自变量x)。故B正确。考点:函数图像平移变换。4.B【解析】试题分析:当时,,即当时,由式知

5、,在上为增函数,且,在上恒成立.又,所以在上恒成立.在上无零点.当时,,在上为减函数,且,在上恒成立.所以在在上为减函数,且当时,,当时,,所以在上有唯一零点.综上所述,所以在上有唯一零点.故选.答案第7页,总8页本卷由【在线组卷网www.zujuan.com】自动生成,请仔细校对后使用,答案仅供参考。考点:1、导数与函数单调性的关系;2、函数的零点存在性;2、分类讨论的思想方法.5.C【解析】试题分析:,故选C.考点:对数的运算.6.D【解析】试题分析:由题意可得由函数与的图像可得函数由图像可知,①②③④都正确.考点:1.函数的图像;2.分段函数;3.函数的单调性;4.函数的值域.7.A【

6、解析】试题分析:根据偶函数的图像关于轴对称可知,偶函数在关于原点对称的区间,单调性相反且最值相同,所以依题意可知在的单调性与在的单调性相反且有相同的最小值,所以在单调递减且最小值为2,故选A.考点:1.函数的奇偶性;2.函数的单调性.8.B【解析】试题分析:的两根为,且,答案第7页,总8页本卷由【在线组卷网www.zujuan.com】自动生成,请仔细校对后使用,答案仅供参考。,故有,即,作出区域,如图阴影部分,可得,所以.考点:1.函数的极值;2.线性规划.9..【解析】试题分析:.考点:对数运算10.【解析】试题分析:将函数进行配方得,又称轴为,函数图象开口向上,所以函数的单调减区间为.

7、考点:二次函数的单调性.11.【解析】试题分析:开偶次方根即,所以.考点:函数定义域及指数函数.12.【解析】试题分析:这属于“”型极限问题,求极限的方法是分子分母同时除以(答案第7页,总8页本卷由【在线组卷网www.zujuan.com】自动生成,请仔细校对后使用,答案仅供参考。的最高次幂),化为一般可求极限型,即.考点:“”型极限13.【解析】试题分析:根据反函数的性质知当函数的图象过点时,则反函数的图象

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。