高中数学 §3 解三角形的实际应用举例(1)教案 北师大版必修5

高中数学 §3 解三角形的实际应用举例(1)教案 北师大版必修5

ID:29368553

大小:672.50 KB

页数:4页

时间:2018-12-19

高中数学 §3 解三角形的实际应用举例(1)教案 北师大版必修5_第1页
高中数学 §3 解三角形的实际应用举例(1)教案 北师大版必修5_第2页
高中数学 §3 解三角形的实际应用举例(1)教案 北师大版必修5_第3页
高中数学 §3 解三角形的实际应用举例(1)教案 北师大版必修5_第4页
资源描述:

《高中数学 §3 解三角形的实际应用举例(1)教案 北师大版必修5》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、§3解三角形的实际应用举例(1)教学目标1、掌握正弦定理、余弦定理,并能运用它们解斜三角形。2、能够运用正弦定理、余弦定理进行三角形边与角的互化。3、培养和提高分析、解决问题的能力。教学重点难点1、正弦定理与余弦定理及其综合应用。2、利用正弦定理、余弦定理进行三角形边与角的互化。教学过程一、复习引入1、正弦定理:2、余弦定理:,二、例题讲解引例:我军有A、B两个小岛相距10海里,敌军在C岛,从A岛望C岛和B岛成60°的视角,从B岛望C岛和A岛成75°的视角,为提高炮弹命中率,须计算B岛和C岛间的距离,请你算算看。解

2、:∴由正弦定理知海里例1.如图,自动卸货汽车采用液压机构,设计时需要计算油泵顶杆BC的长度(如图).已知车厢的最大仰角为60°,油泵顶点B与车厢支点A之间的距离为1.95m,AB与水平线之间的夹角为,AC长为1.40m,计算BC的长(保留三个有效数字).分析:这个问题就是在中,已知AB=1.95m,AC=1.4m,求BC的长,由于已知的两边和它们的夹角,所以可根据余弦定理求出BC。解:由余弦定理,得答:顶杠BC长约为1.89m.解斜三角形理论应用于实际问题应注意:1、认真分析题意,弄清已知元素和未知元素。2、要明确

3、题目中一些名词、术语的意义。如视角,仰角,俯角,方位角等等。3、动手画出示意图,利用几何图形的性质,将已知和未知集中到一个三角形中解决。练1.如图,一艘船以32海里/时的速度向正北航行,在A处看灯塔S在船的北偏东,30分钟后航行到B处,在B处看灯塔S在船的北偏东方向上,求灯塔S和B处的距离.(保留到0.1)解:由正弦定理知海里答:灯塔S和B处的距离约为海里例2.测量高度问题如图,要测底部不能到达的烟囱的高AB,从与烟囱底部在同一水平直线上的C,D两处,测得烟囱的仰角分别是和,C、D间的距离是12m.已知测角仪器高1

4、.5m.求烟囱的高。图中给出了怎样的一个几何图形?已知什么,求什么?分析:因为,又所以只要求出即可解:在中,,由正弦定理得:从而:因此:答:烟囱的高约为练习:在山顶铁塔上处测得地面上一点的俯角,在塔底处测得点的俯角,已知铁塔部分高米,求山高。解:在△ABC中,∠ABC=30°,∠ACB=135°,∴∠CAB=180°-(∠ACB+∠ABC)=180°-(135°+30°)=15°又BC=32,由正弦定理得:课堂小结1、本节课通过举例说明了解斜三角形在实际中的一些应用。掌握利用正弦定理及余弦定理解任意三角形的方法。2

5、、在分析问题解决问题的过程中关键要分析题意,分清已知与所求,根据题意画出示意图,并正确运用正弦定理和余弦定理解题。3、在解实际问题的过程中,贯穿了数学建模的思想,其流程图可表示为:画图形数学模型实际问题解三角形检验(答)实际问题的解数学模型的解

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。