水冷式冷水机组冷凝器污垢热阻的动态试验研究

水冷式冷水机组冷凝器污垢热阻的动态试验研究

ID:27888685

大小:81.22 KB

页数:7页

时间:2018-12-06

水冷式冷水机组冷凝器污垢热阻的动态试验研究_第1页
水冷式冷水机组冷凝器污垢热阻的动态试验研究_第2页
水冷式冷水机组冷凝器污垢热阻的动态试验研究_第3页
水冷式冷水机组冷凝器污垢热阻的动态试验研究_第4页
水冷式冷水机组冷凝器污垢热阻的动态试验研究_第5页
资源描述:

《水冷式冷水机组冷凝器污垢热阻的动态试验研究》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、水冷式冷水机组冷凝器污垢热阻的动态试验研究摘要本文提出了污垢热阻研究的动态试验方法,以珠江水(猎德段)作为冷却水并通过一系列试验得出了不同流速下的污垢热阻试验数据,并观察到了污垢老化现象。这些数据比IITRI/TEMA推荐的数值更具体,可为冷水机组冷凝器的设计、监控和清洗提供参考。关键词污垢热阻冷却水冷凝器冷水机组换热表面的污垢会使传热恶化,且随着强化换热技术的应用,污垢热阻对传热过程的影响更加明显,因此冷凝器冷却水侧污垢热阻值的选取便成了水冷式冷水机组优化设计的主要问题之一。冷却水污垢热阻的数值通常是根据经验数值或是文献、规范等确定,如根据HT

2、RI/TEMAJointCommittee推荐的污垢热阻[1],河水的污垢热阻值是X10-4〜X10_4m2•°C/W,而根据《工业循环水处理设计规范》(GB50050-95)[2],敞开式循环水系统的污垢热阻值为X10-4〜X10-4m2•°C/W。由于不同参考资料给出的污垢热阻的数值变化较大,给实际的设计工作带来了困难。另外不同河流、不同区段、在不同季节时冷却水所形成的污垢也有所不同,因此我们拟采用试验方法,选用在珠江三角洲地区被广泛用作冷却水的珠江水为试验工质进行冷却水污垢热阻的试验,试验是在6月到10月期间进行。冷却水污垢热阻的影响因素主

3、要是温度、流速和水质。由参考文献[1]分析,冷却水温度低于50°C时温度对污垢热阻的影响可忽略。因此主要研究冷却水流速对污垢热阻的影响,为冷凝器的设计提供较具体的污垢热阻数据。1试验原理及试验装置1.1试验原理由传热学法测量污垢热阻Rf,即(1)(2)于是,(3)通过计算冷凝器换热管两侧的换热系数和总的传热系数,从分离出污垢热阻。本试验采用实际的水冷式冷水机组,制冷量是30kW,制冷剂为HCFC-22。冷凝器是两回程的管壳式换热器,管内径是,铜管数目是38根。对管外侧冷凝的HCFC-22,可不考虑污垢热阻。HCFC-22的冷凝换热系数ac,fz为

4、[3]:⑷(5)(6)在换热管的内侧流动的冷却水处于旺盛的紊流,其对结构参数有关,通过测量流体流速、进出口温度就可以由经验公式计算出相应条件下的换热系数。冷凝器总的传热系数可以由其总的换热量、换热面积和对数平均换热温度计算得出。因此,在实验室条件下可以通过测量温度、流速和压力等参数来确定aw,ac,fz和KI,进而就可以得出冷凝器冷却水侧的动态污垢热阻Rf。1.2试验装置试验装置是由两部分组成:一是冷水机组,二是计算机数据采集和监控系统。如图1所示,冷水机组又分为制冷剂回路、冷却水回路冷冻水回路。数据采集系统采集冷水机中三个回路的不同物理量,即冷

5、却水流量和出入口温度、冷冻水流量和出入口温度、冷凝压力,输入到计算机并根据上述试验原理和公式进行数据处理,得出各个时刻的污垢热阻,并监控试验各个阶段。图1污垢热阻试验装置2污垢热阻试验研究以及数据分析2.1验证性试验为验证试验结果的可靠性,先以自来水作冷却水进行试验,所得结果如图2的曲线1和曲线2所示,结果表明:当冷却水流速改变时,所测得的冷却水侧的污垢热阻基本不变且维持为X10-7〜2X10-7m2•°C/W,约为珠江水污垢热阻(见图2的曲线3〜曲线5)的1%。〜2%。,故可以认为试验装置设计合理,所得试验结果可靠。图2试验结果2.2不同流速下

6、珠江水(猎德段)污垢热阻试验采用珠江水为冷却水的污垢试验在两个流速下进行。为保证冷却水质的一致性,定期补充珠江水到试验装置中。如图2的曲线3、曲线4所示,试验在36天的期间内,冷却水流速为/s时,污垢热阻Rf的渐近值为X10_4m2•°C/W。冷却水流速为/s时,污垢热阻Rf的渐近值为X10-4m2-°C/W。污垢热阻的渐近值与冷却水流速成反比关系。这些污垢热阻的数据比TEMA推荐要低。试验结果注释:曲线1:不同自来水流速下污垢热阻的变化曲线2:自来水流速的变化曲线3:1〜20天冷却水流速为/s时污垢热阻的实验曲线,Rf的渐近值为X10_4m2•

7、°C/Wo曲线4:21〜36天冷却水流速为/s时污垢热阻的实验曲线,Rf的渐近值为X10-4m2•°C/W。曲线5:37〜42天后冷却水流速为/s时污垢热阻的实验曲线,Rf的渐近值为X10_4m2•°C/W。曲线6:43〜46天后冷却水流速为/s时污垢热阻的实验曲线,Rf的渐近值为X10-4m2•°C/W。换热面上污垢的变化试验过程中还发现污垢的老化现象。老化的进行使沉积物的特性发生变化,老化的表现为:晶体结构的变化、沉积物的聚合、微生物的饥锇死亡等[4]。通常污垢的老化都会引起沉积物随时间变得更加坚軔,更难以剥蚀。目前国内外对污垢老化的研究尚缺

8、乏必要的数据。如图2的曲线5所示,当试验历经了36天后,在没有停机清洗的情况下直接将冷却水流速增至/s,发现污垢热阻并没有由X10-4m

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。