利用MEMS陀螺仪实现低噪声反馈控制设计.doc

利用MEMS陀螺仪实现低噪声反馈控制设计.doc

ID:27852112

大小:298.50 KB

页数:13页

时间:2018-12-06

利用MEMS陀螺仪实现低噪声反馈控制设计.doc_第1页
利用MEMS陀螺仪实现低噪声反馈控制设计.doc_第2页
利用MEMS陀螺仪实现低噪声反馈控制设计.doc_第3页
利用MEMS陀螺仪实现低噪声反馈控制设计.doc_第4页
利用MEMS陀螺仪实现低噪声反馈控制设计.doc_第5页
资源描述:

《利用MEMS陀螺仪实现低噪声反馈控制设计.doc》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、利用MEMS陀螺仪实现低噪声反馈控制设计利用MEMS陀螺仪实现低噪声反馈控制设计  MEMS陀螺仪提供了测量旋转角速度的一种简单方法,其封装很容易连接印刷电路板,因此被广泛用于许多不同类型的运动控制系统中作为反馈检测元件。在这种类型的功能中,角速度信号(MEMS陀螺仪输出)中的噪声对关键系统行为有着直接的影响,比如平台稳定性,因此通常是影响MEMS陀螺仪能够达到的精度级别的主要因素。  对于定义和开发新的运动控制系统的系统架构师和开发人员来说,“低噪声”是一种自然的且具有指导意义的指标。要想进一步理解这个指标(低噪声),需要将关键的系统级标

2、准(比如指向精度)转换为MEMS陀螺仪数据手册中常见的噪声指标,这是早期的概念和架构化工作的重要组成部分。理解系统对陀螺仪噪声行为的依赖性有很多好处,例如能够建立针对反馈检测元件的相关要求,或反过来分析对某个特定陀螺仪中噪声的系统级响应。  一旦系统设计师深入理解了这个关系,他们就能重点掌握影响角速度反馈环路中噪声行为的两个关键领域:(1)为MEMS陀螺仪的选择开发最合适的标准,(2)在整个传感器的集成过程中保持合适的噪声性能。  运动控制的基本原理  建立MEMS陀螺仪中噪声行为之间的有用关系并分析它对关键系统行为有何影响通常都要从理解系

3、统如何工作开始。图1提供了一个运动控制系统的架构例子,它将重要的系统组件分解成了功能模块。这种系统的功能性目标是建立一个对惯性运动敏感的个人或设备用稳定平台。自动驾驶汽车平台上的微波天线就是这样一个应用例子,它要在造成车辆方向突然改变的速度等恶劣条件下进行操控。如果没有对指向角度的实时控制,这些高度方向性的天线在经历这种惯性运动时可能无法支持连续的通信。    图1:运动控制系统架构例子  图1所示的系统使用了一个伺服电机,它将以与系统其余部分相同或相反的方向进行旋转。反馈环路从MEMS陀螺仪开始,由陀螺仪监视“稳定平台”上的旋转速度(ωG

4、)。陀螺仪的角速度信号随后馈入由滤波、校准、对齐和积分组成的特殊应用数字信号处理电路,产生实时的方向反馈信号(φE)。伺服电机的控制信号(φCOR)来自这个反馈信号与“被命令”方向信号(φCMD)的比较,后者来自中央任务控制系统,或只是代表支持平台上的设备理想工作的方向。  应用例子  从架构的角度看图1所示运动控制系统的移动,有价值的定义和观点也来自对特殊应用的物理属性的分析。考虑图2所示的系统,它从概念的角度观察生产线上的自动化检查系统。这个摄像机系统可以检查传送带上进出视场的物件。在这个方案中,摄像机通过一个长的支架挂接到天花板上。这

5、个支架确定了其高度(见图2中的“D”),可根据它要检查的目标物体大小优化其视场。由于工厂中充满了机械设备和其它活动,摄像机可能时不时经历摆动(见图2中的“ωSW(t)”),从而可能导致检查图像的失真。  这张图中的红色虚线是对来自这种摆动的总角度误差(±φSW)的放大图,绿色虚线代表支持系统图像质量目标的角度误差水平(±φRE)。图2在检查物体表面上的线性位移误差(dSW,dRE)方面定义了关键的系统级指标(图像失真)。这些属性通过公式1中简单的三角函数与摄像机的高度(D)和角度误差项(φSW,φRE)建立起了关系。20160706A02 

6、     图2:工业摄像机检查系统  针对这种系统的最适用的运动控制技术被称为图像稳定技术。早期的图像稳定系统使用基于陀螺仪的反馈系统来驱动伺服电机,并在快门打开期间调整图像传感器的方向。MEMS技术的出现以革命性的方式帮助减小了这些功能的尺寸、成本和功耗,从而使得这种技术在现代数码相机中得到了广泛使用。数字图像处理技术的发展(在它们的算法中仍然使用基于MEMS的角速度测量)已经导致许多应用取消了伺服电机。  不管图像稳定效果来自于伺服电机还是通过图像文件的数字化后处理,陀螺仪的基础功能(反馈检测)仍然是一样的,噪声结果也是如此。为了简单起

7、见,本次讨论专注于经典方法(在图像传感器上使用伺服电机)研究最相关的噪声原理,以及它们是如何关联到这类应用最重要的物理属性的。  角度随机游走(ARW)  所有MEMS陀螺仪的角速率测量都存在噪声。这种固有的传感器噪声代表陀螺仪工作在静态惯性(没有旋转运动)和环境条件(没有振动、冲击等)下输出中的随机变化。MEMS陀螺仪数据手册中描述它们噪声行为的最常用指标是速度噪声密度(RND)和角度随机游走(ARW)。RND参数一般使用的单位是degrees/sec/√Hz,它根据陀螺仪的频率响应从角速度方面提供了预测总噪声的简单方法。  ARW参数一

8、般使用的单位是degrees/√hour,在分析指定时间内噪声对角度估计值的影响时更加有用。公式2提供了根据角速度测量结果估计角度的通用公式。另外,它也提供了将RND参数关联到A

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。