卡尔曼滤波器matlab代码

卡尔曼滤波器matlab代码

ID:27729878

大小:229.66 KB

页数:17页

时间:2018-12-04

卡尔曼滤波器matlab代码_第1页
卡尔曼滤波器matlab代码_第2页
卡尔曼滤波器matlab代码_第3页
卡尔曼滤波器matlab代码_第4页
卡尔曼滤波器matlab代码_第5页
资源描述:

《卡尔曼滤波器matlab代码》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、信息融合大作业——维纳最速下降法滤波器,卡尔曼滤波器设计及Matlab仿真时间:2010-12-6专业:信息工程班级:09030702学号:2007302171姓名:马志强资料1.滤波问题浅谈估计器或滤波器这一术语通常用来称呼一个系统,设计这样的系统是为了从含有噪声的数据中提取人们感兴趣的,接近规定质量的信息。由于这样一个宽目标,估计理论应用于诸如通信、雷达、声纳、导航、地震学、生物医学工程、金融工程等众多不同的领域。例如,考虑一个数字通信系统,其基本形式由发射机、信道和接收机连接组成。发射机的作用是把数字源(例如计算机

2、)产生的0、1符号序列组成的消息信号变换成为适合于信道上传送的波形。而由于符号间干扰和噪声的存在,信道输出端收到的信号是含有噪声的或失真的发送信号。接收机的作用是,操作接收信号并把原消息信号的一个可靠估值传递给系统输出端的某个用户。随着通信系统复杂度的提高,对原消息信号的还原成为通信系统中最为重要的环节,而噪声是接收端需要排除的最主要的干扰,人们也设计出了针对各种不同条件应用的滤波器,其中最速下降算法是一种古老的最优化技术,而卡尔曼滤波器随着应用条件的精简成为了普适性的高效滤波器。2.维纳最速下降算法滤波器2.1最速下降

3、算法的基本思想考虑一个代价函数J(w),它是某个未知向量w的连续可微分函数。函数J(w)将w的元素映射为实数。这里,我们要寻找一个最优解w。使它满足如下条件J(w0)≤J(w)(2.1)这也是无约束最优化的数学表示。特别适合于自适应滤波的一类无约束最优化算法基于局部迭代下降的算法:从某一初始猜想w(0)出发,产生一系列权向量w1,w2,⋯,使得代价函数J(w)在算法的每一次迭代都是下降的,即Jwn+1

4、式是最速下降法,该方法是沿最速下降方向连续调整权向量。为方便起见,我们将梯度向量资料表示为g=∇Jw=∂J(w)∂w(2.2)因此,最速下降法可以表示为wn+1=wn-12μg(n)(2.3)其中n代表进程,μ是正常数,称为步长参数,1/2因子的引入是为了数学上处理方便。在从n到n+1的迭代中,权向量的调整量为δwn=wn+1-wn=-12μg(n)(2.4)为了证明最速下降算法满足式(2.1),在wn处进行一阶泰勒展开,得到Jwn+1≈Jwn+gHnδw(n)(2.5)此式对于μ较小时是成立的。在式(2.4)中设w为负

5、值向量,因而梯度向量g也为负值向量,所以使用埃尔米特转置。将式(2.4)用到式(2.5)中,得到Jwn+1≃Jwn-12μg(n)2此式表明当μ为正数时,Jwn+1

6、优滤波提供一个参考。在时刻n抽头输入向量表示为u(n),滤波器输出端期望响应的估计值为d(n

7、Un),其中Un是由抽头输un,un-1,⋯,u(n-M+1)所张成的空间。空过比较期望响应d(n)及其估计值,可以得到一个估计误差e(n),即en=dn-dnUn=dn-wHnu(n)资料(2.6)这里wHnu(n)是抽头权向量w(n)与抽头输入向量u(n)的内积。w(n)可以进一步表示为wn=w0n,w1n,⋯,wM-1nT同样,抽头输入向量u(n)可表示为un=un,un-1,⋯,un-M+1T如果抽头输入向量un和期望响

8、应dn是联合平稳的,此时均方误差或者在时刻n的代价函数J(n)是抽头权向量的二次函数,于是可以得到Jn=σd2-wHnp-pHwn+wHnRw(n)(2.7)其中,σd2为目标函数dn的方差,p抽头输入向量un与期望响应dn的互相关向量,及R为抽头输入向量un的相关矩阵。从而梯度向量可以写为∇Jn=∂J(n)∂a0(n)+j∂J(n)∂b0(n)∂J(n)∂a1(n)∂J(n)∂aM-1(n)+⋮+j∂J(n)∂b1(n)∂J(n)∂bM-1(n)=-2p+2Rw(n)(2.8)其中在列向量中∂J(n)∂ak(n)和∂J

9、(n)∂bk(n)分别是代价函数Jn对应第k个抽头权值wkn的实部ak(n)和虚部bk(n)的偏导数。对最速下降算法应用而言,假设式(2.8)中相关矩阵R和互相关向量p已知,则对于给定的抽头权向量wn+1为wn+1=wn+μ[p-Rwn(2.9)它描述了为那滤波中最速下降法的数学表达式。3.卡尔曼滤波器3.1卡尔曼滤

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。