函数单调性和判断或证明方法

函数单调性和判断或证明方法

ID:26552422

大小:1.81 MB

页数:6页

时间:2018-11-27

函数单调性和判断或证明方法_第1页
函数单调性和判断或证明方法_第2页
函数单调性和判断或证明方法_第3页
函数单调性和判断或证明方法_第4页
函数单调性和判断或证明方法_第5页
资源描述:

《函数单调性和判断或证明方法》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、函数单调性的判断或证明方法.(1)定义法。用定义法证明函数的单调性的一般步骤是①取值,设,且;②作差,求;③变形(合并同类项、通分、分解因式、配方等)向有利于判断差值符号的方向变形;④定号,判断的正负符号,当符号不确定时,应分类讨论;⑤下结论,根据函数单调性的定义下结论。例1.判断函数在(-1,+∞)上的单调性,并证明.解:设-10,x2+1>0.∴当a>0时,f(x1)-f(x2)<0,即f(x1)

2、上单调递增.当a<0时,f(x1)-f(x2)>0,即f(x1)>f(x2),∴函数y=f(x)在(-1,+∞)上单调递减.例2.证明函数在区间和上是增函数;在上为减函数。(增两端,减中间)证明:设,则因为,所以,所以,..所以所以设则,因为,所以,所以所以同理,可得(1)运算性质法.①在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.(增+增=增;减+减=减;增-减=增,减-增=减)②若.③当函数.④函数二者有相反的单调性。⑤运用已知结论,直接判断函数的单调性,如一

3、次函数、反比例函数等。(3)图像法.根据函数图像的上升或下降判断函数的单调性。例3.求函数的单调区间。解:..在同一坐标系下作出函数的图像得所以函数的单调增区间为减区间为.(4)复合函数法.(步骤:①求函数的定义域;②分解复合函数;③判断内、外层函数的单调性;④根据复合函数的单调性确定函数的单调性.⑤若集合是内层函数的一个单调区间,则便是原复合函数的一个单调区间,如例4;若不是内层函数的一个单调区间,则需把划分成内层函数的若干个单调子区间,这些单调子区间便分别是原复合函数的单调区间,如例5.)设,,都是单调函数,则在上也是单调函数,其单调性

4、由“同增异减”来确定,即“里外”函数增减性相同,复合函数为增函数,“里外”函数的增减性相反,复合函数为减函数。如下表:增增增增减减减增减减减增例4.求函数的单调区间..解原函数是由外层函数和内层函数复合而成的;易知是外层函数的单调增区间;令,解得的取值范围为;由于是内层函数的一个单调减区间,于是便是原函数的一个单调区间;根据复合函数“同增异减”的复合原则知,是原函数的单调减区间。例5求函数的单调区间.解原函数是由外层函数和内层函数复合而成的;易知和都是外层函数的单调减区间;令,解得的取值范围为;结合二次函数的图象可知不是内层函数的一个单调区

5、间,但可以把区间划分成内层函数的两个单调子区间和,其中是其单调减区间,是其单调增区间;于是根据复合函数“同增异减”的复合原则知,是原函数的单调增区间,是原函数的单调减区间。同理,令,可求得是原函数的单调增区间,是原函数的单调减区间。综上可知,原函数的单调增区间是和,单调减区间是和...(5)含参数函数的单调性问题.例.设(先分离常数,即对函数的解析式进行变形,找到基本函数的类型,再分类讨论.)解:由题意得原函数的定义域为,当上为减函数;当上为增函数。(6)抽象函数的单调性.(抽象函数问题是指没有给出解析式,只给出一些特殊条件的函数问题)常采

6、用定义法.要充分利用已知条件,对变量进行合理赋值,并结合函数单调性的定义进行证明。例1已知函数对任意实数,均有.且当>0时,>0,试判断的单调性,并说明理由.解析:设,且,则->0,故>0.∴-=-=+-=>0.∴<.故在(-,+)上为增函数.例2.设f(x)定义于实数集上,当时,,且对于任意实数x、y,有,求证:在R上为增函数。证明:在中取,得若,令,则,与矛盾..所以,即有当时,;当时,而所以当时,所以对任意,恒有设,则所以所以在R上为增函数。..

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。