欢迎来到天天文库
浏览记录
ID:26013264
大小:1.27 MB
页数:23页
时间:2018-11-24
《2015年全国中考数学试卷解析分类汇编-专题22-等腰三角形(第一期)》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、等腰三角形[中*@国&教%育出版~网][中国@^教%*育出#版网]一.选择题1,(2015威海,第9题4分)[中国&教*^育%#出版网]【答案】:B[中国@^*%教育出#版网][中国&%@教育^出版~网]【解析】根据等腰三角形两底角相等求出∠ABC=∠ACB,再求出∠CBD,然后根据∠ABD=∠ABC﹣∠CBD计算即可得解.【备考指导】本题考查了等腰三角形的性质,主要利用了等腰三角形两底角相等,熟记性质是解题的关键.2..(2015·山东潍坊第11题3分)如图,有一块边长为6cm的正三角形纸板,在它
2、的三个角处分别截去一个彼此全等的筝形,再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,则该纸盒侧面积的最大值是( )[中#@%国教~育出版&网] A.cm2B.cm2C.cm2D.cm2考点:二次函数的应用;展开图折叠成几何体;等边三角形的性质..分析:如图,由等边三角形的性质可以得出∠A=∠B=∠C=60°,由三个筝形全等就可以得出AD=BE=BF=CG=CH=AK,根据折叠后是一个三棱柱就可以得出DO=PE=PF=QG=QH=OK,四边形ODEP、四边形PFGQ、四边形QHKO为矩形,且全等.
3、连结AO证明△AOD≌△AOK就可以得出∠OAD=∠OAK=30°,设OD=x,则AO=2x,由勾股定理就可以求出AD=x,由矩形的面积公式就可以表示纸盒的侧面积,由二次函数的性质就可以求出结论.解答:解:∵△ABC为等边三角形,∴∠A=∠B=∠C=60°,AB=BC=AC.第23页共23页∵筝形ADOK≌筝形BEPF≌筝形AGQH,∴AD=BE=BF=CG=CH=AK.∵折叠后是一个三棱柱,∴DO=PE=PF=QG=QH=OK,四边形ODEP、四边形PFGQ、四边形QHKO都为矩形.∴∠ADO=∠
4、AKO=90°.连结AO,在Rt△AOD和Rt△AOK中,,∴Rt△AOD≌Rt△AOK(HL).∴∠OAD=∠OAK=30°.设OD=x,则AO=2x,由勾股定理就可以求出AD=x,∴DE=6﹣2x,∴纸盒侧面积=3x(6﹣2x)=﹣6x2+18x,=﹣6(x﹣)2+,∴当x=时,纸盒侧面积最大为.故选C.点评:本题考查了等边三角形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,矩形的面积公式的运用,二次函数的性质的运用,解答时表示出纸盒的侧面积是关键.3.(2015•江苏苏州,第7题
5、3分)如图,在△ABC中,AB=AC,D为BC中点,∠BAD=35°,则∠C的度数为A.35°B.45°C.55°D.60°(第7题)【难度】★[来源:zz&step%.#co@m~]【考点分析】考察等腰三角形三线合一,往年选择填空也常考察三角形基础题目,难度很小。【解析】QAB=AC,D为BC中点[来源@:中国~#*教育&出版网]∴AD平分∠BAC,AD⊥BC∴∠DAC=∠BAD=35°,∠ADC=90°∴∠C=∠ADC-∠DAC=55°故选第23页共23页C此题方法不唯一[来源^@:~中国教育出
6、版*网&]4.(2015•江苏无锡,第10题2分)如图,Rt△ABC,∠ACB=90°,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为( )[来源*%:z#zstep.^co&m][来~源:z%^zst&ep.c@om][来源:%@中~&教*网] A.B.C.D.考点:翻折变换(折叠问题).分析:首先根据折叠可得CD=AC=3,B′C=BC=4,∠ACE=∠DCE,∠
7、BCF=∠B′CF,CE⊥AB,然后求得△ECF是等腰直角三角形,进而求得∠B′FD=90°,CE=EF=,ED=AE,从而求得B′D=1,DF=,在Rt△B′DF,由勾股定理即可求得B′F的长.解答:解:根据折叠的性质可知CD=AC=3,B′C=BC=4,∠ACE=∠DCE,∠BCF=∠B′CF,CE⊥AB,∴B′D=4﹣3=1,∠DCE+∠B′CF=∠ACE+∠BCF,∵∠ACB=90°,∴∠ECF=45°,∴△ECF是等腰直角三角形,∴EF=CE,∠EFC=45°,∴∠BFC=∠B′FC=13
8、5°,∴∠B′FD=90°,∵S△ABC=AC•BC=AB•CE,∴AC•BC=AB•CE,∵根据勾股定理求得AB=5,∴CE=,∴EF=,ED=AE==,∴DF=EF﹣ED=,∴B′F==.故选B.点评:第23页共23页此题主要考查了翻折变换,等腰三角形的判定和性质,勾股定理的应用等,根据折叠的性质求得相等的相等相等的角是本题的关键.5.(2015•浙江衢州,第9题3分)如图,已知“人字梯”的5个踩档把梯子等分成6份,从上往下的第二个踩档与第三个踩档的正中间处有一条
此文档下载收益归作者所有