欢迎来到天天文库
浏览记录
ID:25602298
大小:672.50 KB
页数:10页
时间:2018-11-21
《小波变换和神经网络的变频器故障诊断方法.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、基于小波变换和神经网络的变频器故障诊断方法易鸿(四川文理学院物理与工程技术系,四川达州635000)[摘要]本文以逆变器输出故障电流作为故障信息,利用小波分析的方法提取低频能量值作为特征向量,通过神经网络实现逆变器故障桥臂定位,最后利用逆变器同一桥臂故障信号对称性的特点,用一种简单的判断逻辑实现故障元件的分离。仿真结果表明:该方法收敛速度快,诊断准确度高。[关键词]逆变器;小波分析;故障诊断1、引言变频器在运行过程中,其故障的发生必然表现为一些特征参量的变化,故障特征提取方法的研究便成了变频器故障诊断技术的关键。含有丰富信息的变频器运行状态信号
2、的特征提取是建立在信号处理基础上的,信号分析的目的是通过对运行状态信号的处理,确定能很好的表征设备运行状态的特征量。小波分析是近年掀起的一个前沿领域,它被认为是傅立叶分析方法的突破性进展。小波函数具有很好的时—频特性,因而小波分析方法为信号的时频分析提供了有力的手段,对于变频输出电流信号采用小波变换的方法,可以方便准确的提取故障特征,从而能对变频器进行故障诊断。2变频器输出电流的小波变换2.1小波分析的基本理论小波分析是从Fourier分析逐渐发展起来的,它源于函数的伸缩和平移。小波,简单地说是“一小段波”,是一种特殊的长度有限、平均值为零的波
3、。它有两个特点:一是“小”,即在时域都具有紧支撑或近似紧支撑集;二是正负交替的波动性,也即直流分量为零。小波变换就是将信号分解为一系列小波函数的叠加,而这些小波函数都是由一个母小波函数经过平移和尺度伸缩得来的。把对模拟信号称的积分变换:称为小波变换,其中。是由经平移和缩放的结果。在小波变换的定义中,小波函数是窗函数,它的时—频窗表现了小波变换的时—频局部化能力。2.2变频器输出电流的小波分解变频器逆变输出电流波形中通常含有非周期信号和畸变信号,采样传统的傅立叶变换已经不合时宜,而小波变换对信号的奇异点非常敏感,当信号在某一时刻发生突变时,该信号
4、的小波变换在一定的尺度范围内均会在信号突变处出现峰值,并且呈现出与噪声截然不同的特征。利用这一特点,通过选择恰当的小波基和合适的尺度参数,可以在强噪声背景下,准确的检测到突变信号。有效值突变点所对应的小波变换模极大值具有沿尺度传递的特性;而随机噪声信号的小波变换模极大值将随着尺度的增加而迅速衰减,利用该性质可以提高变频器故障诊断系统抗噪声干扰能力。傅立叶变换用到的基本函数只是,具有唯一性,而小波分析中所用到的小波函数具有不唯一性,对同一个工程问题应用不同的小波基进行分析会产生不同的结果。目前判定小波基的好坏主要是通过小波分解方法处理信号的结果和
5、理论结果的误差来判断,并由此选定小波基。选择和构造一个正交小波要求其具有一定的紧支集,平滑性和对称性。紧支集保证有优良的空间局部性质;对称性保证子波的滤波特性有线性相移,不会造成信号的失真;平滑性保证频率分辩率的高低。但是上述三点不可能得到同时满足,紧支撑性与平滑性二者不可兼得。dbN小波具有正交性,N阶消失矩,光滑度随N的增加而增加。但它的有效支撑长度等于2N-1,并且不具备对称性(dbl除外)。可以看出,随着N的增大,光滑度和消失矩性能变好,但其支撑长度变大。根据变频输出电流信号的特点综合考虑,这里选择db3小波来基本满足紧支撑性与光滑性的
6、要求。3变频器故障特征提取方法3.1基于小波分解的能量特征提取方法小波分解实质上是对被检测信号的多带通滤波,通过对变频器输出电流的小波分解,可以捕捉其故障信息,从而达到故障特征提取的。从信号滤波的角度来看,正交小波分解是将待分解信号通过一个高通滤波器和一个低通滤波器进行滤波,得到一组低频信号和一组高频信号,并且对低频信号一直分解到第N层,每次分解得到的低频信号和高频信号长度都是原信号长度的一半,两者长度之和等于原信号的长度,可以看作是在滤波后进行了隔点采样,分解结果既不冗余,也不损失原信号的任何信息。下面对电压型PWM逆变器输出A相电流信号采用
7、db3小波基进行3层小波分解,提取一个低频系数和三个高频系数,然后对各个系数求出其能量值,按照顺序排成一列向量,该向量就是对应某一故障的特征向量。设测试信号在在子空间内的小波能量为:输出A相电流的具体提取方法如下:(1)对输出电流信号进行三层分解,得出4个频带的小波分解系数。重构各节点小波分解系数,则总信号S可表示为:S=A3+D3+D2+D1(2)求各分解系数信号的总能量,设对应的能量为则有:(3)构造特征向量。当逆变电路发生故障时,会对输出电流波形各频带内信号的能量有较大的影响,因此,以能量为元素可以构造一个特征向量。特征向量T构造如下:当
8、能量较大时,通常是一个较大的数值,在数据分析上会带来一些不方便的地方,由此,可以对特征向量T进行归一化处理,令向量即为归一化后的向量。上述方法用MAT
此文档下载收益归作者所有