欢迎来到天天文库
浏览记录
ID:24890238
大小:4.00 MB
页数:49页
时间:2018-11-16
《自动控制原理演示文稿2-2》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、自动控制原理第二章控制系统的数学模型1基本概念2结构图及其等效变换3信号流图与梅森(Mason)公式退出自动控制系统的组成可以是电气的,机械的,液压的,气动的等等,然而描述这些系统的数学模型却可以是相同的。因此,通过数学模型来研究自动控制系统,就摆脱了各种类型系统的外部关系而抓住这些系统的共同运动规律,控制系统的数学模型是通过物理学,化学,生物学等定律来描述的,如机械系统的牛顿定律,电气系统的克希霍夫定律等都是用来描述系统模型的基本定律。如果描述系统的数学模型是线性的微分方程,则该系统为线性系统,若方程中的系数是常数,则称其为
2、线性定常系统。数学模型可以是标量方程和向量的状态方程。本章主要讨论的是线性定常系统。我们可以对描述的线性定常微分方程进行积分变换,得出传递函数,方框图,信号流图,频率特性等数学描述。线性系统实际上是忽略了系统中某些次要因素,对数学模型进行近似而得到的。以后各章所讨论的系统,除第七章外,均指线性化的系统。退出控制系统的数学模型综述1基本概念数学模型:退出数学模型是描述系统动态特性的数学表达式;数学模型可以有多种形式。在经典理论中,常用的数学模型是微(差)分方程,结构图,信号流图等;在现代控制理论中,采用的是状态空间表达式。结构图
3、,信号流图,状态图是数学模型的图形表达形式。建立合理的数学模型,对于系统的分析研究是十分重要的。合理包括两条:(1)反映元件及系统的特性要正确;(2)写出的数学式子要简明;控制系统数学模型的要求可采用解析法和实验法。解析法是根据系统和元件所遵循的有关定律来建立数学模型的。用解析法建立数学模型时,对其内部所体现的运动机理和科学规律要十分清楚,要抓住主要矛盾,忽略次要矛盾,力求所建立的数学模型要合理。实验法是根据实验数据来建立数学模型的,即人为地在系统上加上某种测试信号,用实验所得的输入和输出数据来辨识系统的结构,阶次和参数,这种
4、方法也成为系统辨识。线性系统最重要的特性是可用叠加原理。对非线性系统当非线性不严重或变量变化范围不大时,可利用小偏差线性化的方法使数学模型线性化。微分方程微分方程是描述自动控制系统时域动态特性的最基本模型,微分方程又称之为控制系统时域内的运动方程。退出用解析法建立运动方程的步骤是:1)分析系统的工作原理和系统中各变量间的关系,确定出待研究元件或系统的输入量和输出量;2)从输入端入手(闭环系统一般从比较环节入手),依据各元件所遵循的物理,化学,生物等规律,列写各自方程式,但要注意负载效应。所谓负载效应,就是考虑后一级对前一级的影
5、响。3)将所有方程联解,消去中间变量,得出系统输入输出的标准方程。所谓标准方程包含三方面的内容:①将与输入量有关的各项放在方程的右边,与输出量有关的各项放在方程的左边;②各导数项按降幂排列;③将方程的系数通过元件或系统的参数化成具有一定物理意义的系数。说明:1)传递函数是线性定常系统在复频域里的数学模型,其与微分方程一样,包含了系统有关动态方面的信息。2)传递函数是在零初始条件下定义的,当初始条件不为零时,传递函数不能反映系统的全部特点。3)传递函数反映的是系统本身的一种属性,其各项系数完全取决于系统本身的结构与参数,与输入量
6、的大小和性质无关。4)传递函数包含联系输入量与输出量所必须的单位,但是它不提供有关系统物理结构的任何信息(许多物理上完全不同的系统,可以具有相同的传递函数)。5)如果系统的传递函数已知,则可以针对各种不同形式的输入量研究系统的输出或响应,以便掌握系统的性质。自动控制系统是由若干个典型环节组合而成的,典型环节包括比例环节,惯性环节,积分环节,微分环节,振荡环节,一阶比例微分环节,二阶比例微分环节,不稳定环节,延迟环节等。传递函数线性定常系统可由下列微分方程描述:传递函数可定义为:在零初始条件下,在线性定常系统中,系统的输出量c(
7、t)的拉氏变换C(s)与输入量r(t)的拉氏变换R(s)之比既退出几个基本公式:退出--c(t)对控制信号r(t)的闭环传函记为,即c(t)对扰动信号f(t)的闭环传函记为ε(t)对控制信号r(t)的闭环传函记为ε(t)对干扰信号f(t)闭环传函记为若H(s)=1,共同规律如下:其分子等于对应所求的闭环传递函数的输入信号到输出信号所经过的传递函数的乘积,并赋以符号,其分母等于1加上开环传函。若H(s)=1,2结构图及其等效变换控制系统都是由一些元部件组成的,根据不同的功能,可将系统划分为若干环节(也叫做子系统),每个环节的性能
8、可以用一个单向相的函数方框来表示,方框中的内容为这个环节的传递函数。根据系统中信息的传递方向,将各个环节的函数方框图用信号线依次连接起来,就构成了系统的结构。系统的结构图实际上是每个元件的功能和信号流向的图解表示。系统的结构图又称之系统的方框图。退出写出组成系统的各个环节的微
此文档下载收益归作者所有