微网电能质量治理装置的工程实用技术

微网电能质量治理装置的工程实用技术

ID:24704418

大小:50.00 KB

页数:6页

时间:2018-11-15

微网电能质量治理装置的工程实用技术_第1页
微网电能质量治理装置的工程实用技术_第2页
微网电能质量治理装置的工程实用技术_第3页
微网电能质量治理装置的工程实用技术_第4页
微网电能质量治理装置的工程实用技术_第5页
资源描述:

《微网电能质量治理装置的工程实用技术》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、微网电能质量治理装置的工程实用技术摘要:文章首先从开关器件的损耗分析入手,提出了一些降低装置损耗的措施,采用多电平变换器拓扑以及软开关控制技术等,并根据损耗分析结果对开关器件的选型进行指导;其次,对微网电能质量治理装置在发生电网短路时的保护问题进行了分析,并对解决方案进行探究。  关键词:开关器件;微网电能;电网短路  中图分类号:TM761文献标识码:A:1006-8937(2015)36-0001-02  1电力电子开关器件损耗分析  电压源变流器损耗PTotal主要由IGBT损耗PT和反并联二极管损耗PD组成。由开关过程中,IGBT和续流二极管的典型电

2、压电流波形可知,IGBT在开通和关断过程中存在电压、电流均不为零的时间段,期间就产生了开关损耗。同时,在其导通状态下,由于正向导通压降的存在,也会伴随着导通损耗。一般可以忽略截止损耗和驱动损耗,因此IGBT损耗PT主要包括:通态损耗PTcon、开通损耗Pon、关断损耗Poff。  IGBT的通态功耗由其正向导通压降和导通电阻引起,其大小取决于流通过电流(受变流器输出电流以及IGBT开关过程影响),同时受结温的影响。  IGBT的开通和关断功耗由IGBT的导通和关断延迟引起,对于给定的控制参数和被忽略寄生元素,其大小取决于开关频率、流通过的电流、直流母线电压(

3、开通和关断过程,电压变化范围的一端就是母线电压),同时受结温的影响。  续流二极管损耗主要包括:反向恢复损耗、通态损耗。由于开通时间不长,考通损耗可以不作考虑。截止损耗由于其非常小的截止电流,也可以不予考虑。但反向恢复损耗则不同,其反向恢复时间并不短,且电压电流值也并不小,因此一定不能忽略。F调制方式、变流器电路结构、开关控制方式以及开关器件选型等方面对装置中的电力电子变换器进行损耗优化。  2.1P调制方式  换流器损耗与开关频率和调制策略有很大的关系,开关频率和调制策略不同,对换流器损耗的影响也不同。相比正弦脉宽调制SP,空间矢量脉宽调制SVP可以通过适

4、当地分配零矢量,在同样采样周期的基础上,每相每周期最多可有120°的扇区不开关,从而最多可将开关总次数减少1/3,如果在负载电流较大的区域不开关器件,将大大减小器件的开关损耗。相同输出谐波水平下,空间矢量脉宽调制SVP的开关频率较SP平均降低约1/3,将降低50%的换流器开关损耗。  2.2变流器电路结构  多电平变换器具有输出波形谐波成分小、开关频率低以及损耗小的优点,可以用于提高装置效率。三电平变流器有不同的拓朴结构,如二极管箱位(NPC)三电平变流器、飞跨电容式三电平变流器、全桥级联三电平变流器及一些改进型三电平拓扑。  2.3选择低损耗的开关

5、元件和二极管等元器件  开关器件的导通压降和导通电阻是产生损耗的根本原因,因此选择合理的器件对于降低装置损耗也有重要意义。选择IGBT以及二极管时,在满足成本要求的前提下,优先选择正向导通压降和导通电阻较小、开关损耗较小和工作结温大的元件。  另外,随着SiC功率半导体器件技术的发展,未来SiC器件也可能在降低损耗方面发挥重要作用。  3短路时装置的保护策略  3.1微网电能治理装置中IGBT的短路  随着IGBT在微网电能质量治理装置以及在电气各个领域更为广泛的应用,其应用环境也越来越不好,过电流现象以及短路现象不时地出现。但是对于电能质量治理装置来说,不

6、管从可靠性还是安全性方面考虑,这种功率半导体开关器件由于负载短路而烧坏的情况都是绝对不允许出现的。  当微网电能治理装置发生短路故障时,首先考虑IGBT处于何种工作状态。如果IGBT导通状态下发生短路情况,由于电感在直流回路中特别小,因此其短路电流将会特别大,这在IGBT的使用中是一定不能出现的情况。实际运行过程中,IGBT在短路状态下通常要通过一定的技术措施来限制流通过它的短路电流。  电能治理装置中IGBT的短路电流和功耗是由短路回路中的总电感量决定的。当回路中电感量数值较大时,IGBT关断过程中的di/dt比较小,则IGBT的饱和状态将会被延缓。为了保

7、护IGBT器件免受该过电压的冲击,需要将该电压尖峰控制在IGBT额定反向截止电压之下。  在电感量数值较小的情况下,IGBT关断过程中的电流变化率di/dt就会比较大。因此,IGBT将会迅速进入退饱和阶段,并伴随着结温快速上升现象。  3.2短路保护的主要措施  基于以上分析,微网电能治理装置中IGBT的短路保护策略应综合考虑器件可能受到的各种短路电流冲击,具体安全措施包括以下几个方面。  3.2.1降低回路中的短路电流值  在系统短路情况下,IGBT的端电压Uce将会逐渐上升到直流母线的额定电压等级。短路过程持续时间越长,半导体器件的导通损耗和开关损耗就会

8、越大。如果散热系统不能及时将这部分损耗导致的热量传递

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。