高考压轴题:导数题型及解题方法总结很全

高考压轴题:导数题型及解题方法总结很全

ID:24430969

大小:430.93 KB

页数:3页

时间:2018-11-14

高考压轴题:导数题型及解题方法总结很全_第1页
高考压轴题:导数题型及解题方法总结很全_第2页
高考压轴题:导数题型及解题方法总结很全_第3页
资源描述:

《高考压轴题:导数题型及解题方法总结很全》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、高考压轴题:导数题型及解题方法(自己总结供参考)一.切线问题题型1求曲线在处的切线方程。方法:为在处的切线的斜率。题型2过点的直线与曲线的相切问题。方法:设曲线的切点,由求出,进而解决相关问题。注意:曲线在某点处的切线若有则只有一,曲线过某点的切线往往不止一条。例已知函数f(x)=x3﹣3x.(1)求曲线y=f(x)在点x=2处的切线方程;(答案:)(2)若过点A可作曲线的三条切线,求实数的取值范围、(提示:设曲线上的切点();建立的等式关系。将问题转化为关于的方程有三个不同实数根问题。(答案:的范围是)题型3求两个曲线、的公切线。方法:设曲线、

2、的切点分别为()。();建立的等式关系,,;求出,进而求出切线方程。解决问题的方法是设切点,用导数求斜率,建立等式关系。例求曲线与曲线的公切线方程。(答案)二.单调性问题题型1求函数的单调区间。求含参函数的单调区间的关键是确定分类标准。分类的方法有:(1)在求极值点的过程中,未知数的系数与0的关系不定而引起的分类;(2)在求极值点的过程中,有无极值点引起的分类(涉及到二次方程问题时,△与0的关系不定);(3)在求极值点的过程中,极值点的大小关系不定而引起的分类;(4)在求极值点的过程中,极值点与区间的关系不定而引起分类等。注意分类时必须从同一标准

3、出发,做到不重复,不遗漏。例已知函数(1)求函数的单调区间。(利用极值点的大小关系分类)(2)若,求函数的单调区间。(利用极值点与区间的关系分类)题型2已知函数在某区间是单调,求参数的范围问题。方法1:研究导函数讨论。方法2:转化为在给定区间上恒成立问题,方法3:利用子区间(即子集思想);首先求出函数的单调增区间或减区间,然后让所给区间是求的增或减区间的子集。注意:“函数在上是减函数”与“函数的单调减区间是”的区别是前者是后者的子集。例已知函数+在上是单调函数,求实数的取值范围.(答案)题型3已知函数在某区间的不单调,求参数的范围问题。方法1:正

4、难则反,研究在某区间的不单调方法2:研究导函数是零点问题,再检验。方法3:直接研究不单调,分情况讨论。例设函数,在区间内不单调,求实数的取值范围。(答案:))三.极值、最值问题。题型1求函数极值、最值。基本思路:定义域→疑似极值点→单调区间→极值→最值。例已知函数,求在的极小值。(利用极值点的大小关系、及极值点与区间的关系分类)题型2已知函数极值,求系数值或范围。方法:1.利用导函数零点问题转化为方程解问题,求出参数,再检验。方法2.转化为函数单调性问题。例函数。0是函数的极值点。求实数值。(答案:1)3题型3已知最值,求系数值或范围。方法:1.

5、直接求最值;2.转化恒成立,求出范围,再检验。例设,函数.若函数,在处取得最大值,求的取值范围.(答案:)四.不等式恒成立(或存在性)问题。一些方法1.若函数,>恒成立,,则2.对任意,恒成立。则。3.对,成立。则。4.对,恒成立。转化恒成立4.对,成立。则。5.对,成立。则6.对,成立。则构造函数。转化证明在是增函数。题型1已知不等式恒成立,求系数范围。方法:(1)分离法:求最值时,可能用罗比达法则;研究单调性时,或多次求导。(2)讨论法:有的需构造函数。关键确定讨论标准。分类的方法:在求极值点的过程中,未知数的系数与0的关系不定而引起的分类;

6、有无极值点引起的分类(涉及到二次方程问题时,△与0的关系不定);极值点的大小关系不定而而引起的分类;极值点与区间的关系不定而引起分类。分类必须从同一标准出发,做到不重复,不遗漏。(3)数形结合:(4)变更主元解题思路1.代特值缩小范围。2.化简不等式。3.选方法(用讨论法,或构造新函数)。方法:分离法。求最值时,可能用罗比达法则;研究单调性时,或多次求导。例函数。在恒成立,求实数取值范围。(方法:分离法,多次求导答案:)方法:讨论法。有的需构造函数。关键确定讨论标准。分类的方法:在求极值点的过程中,未知数的系数与0的关系不定而引起的分类;有无极值

7、点引起的分类(涉及到二次方程问题时,△与0的关系不定);极值点的大小关系不定而而引起的分类;极值点与区间的关系不定而引起分类。分类必须从同一标准出发,做到不重复,不遗漏。例设函数f(x)=.若当x≥0时f(x)≥0,求a的取值范围.(答案:的取值范围为)方法:数形结合。数形结合解不等式恒成立问题的步骤:(1)不等式等价变形(2)把不等式两端的式子分别看成两个函数(其中一个函数的图像为直线,)。(3)利用导数研究函数的单调性,极值、最值,图像的凹凸性。(4)画出两个函数图像。(5)根据不等式关系和图形的位置关系,列式求解。例(2012新课标全国卷理

8、科21题第二问)已知函数满足;若,求的最大值。0yxC:1ML:解:,令得:得:,(变形)又,(设函数)设,。(画函数图像)的图像是过(

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。