基于视觉的选煤厂智能监控系统研究

基于视觉的选煤厂智能监控系统研究

ID:23232328

大小:5.28 MB

页数:160页

时间:2018-11-04

基于视觉的选煤厂智能监控系统研究_第1页
基于视觉的选煤厂智能监控系统研究_第2页
基于视觉的选煤厂智能监控系统研究_第3页
基于视觉的选煤厂智能监控系统研究_第4页
基于视觉的选煤厂智能监控系统研究_第5页
资源描述:

《基于视觉的选煤厂智能监控系统研究》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、AbstractThecoalsecurityhasattractedmuchattentionrecently.Coaldressingisanessentialprocessincoalproduction,whereaccidentsoccurringfrequently.Thisthesisaddsvisualelementstotheexistingvideosurveillancesystemofcoalpreparationplant.Upgradeittoanintelligentmonitoringsystemwh

2、ichcancarryonhumanmovementdetection,trackindependently,andalarmwhensomethingabnormal,etc.Themiantaskofthisthesisincludes:a.Movingtargetdetection.Takeimagenoiseprocessingforvideoframe.It’sthroughthebackgroundsubtractionthatbasedonmixtureGaussianmodeltodetectmotiontarget

3、,thenaccomplishtargetsegmentationroughlyaccordingtotheproportionofhumanbody.b.Featureextractionofhumanimagebasedon6-LBPandHOG.Thisthesiselaboratesandmakesuseoftwofeatureextractionmethods,onesistheHOGfeatureswhichbasedontheedgegradientofappearanceandoutlineoflocaltarget

4、,andtheotheroneistheLBPfeaturewhichbasedonthecolorandtextureinformationoflocalarea.Anotherfeatureextractionmethod,e-LBPisproposedonthebasisofthetraditionalLBPfeatureextractionmethods,removepartoftheredundantinformationandretainmoreedgeprofileinformationofhumanbody.Fina

5、lly,usethePCAmethodtoreducethefeaturedimension.ExperimentsshowthatthefeatureextractionmethodbasedonHOGcombiningwith6-LBPfeaturehasgoodcharacterizationresultforthehumanbody.c.Thedesignofhumanclassifierviasparserepresentation.Consideringthe sparserepresentationtheoryhasd

6、iscriminationwhichcanchoosetheeffectivesubset andrejectinvalidsubset,thethesisusesparserepresentationmethodthatgetsthe sparsesolutionsvia-minimizationtodesignthehumanclassifier.Experiments showthatthehumanclassifiersbasedonsparserepresentationhasbettereffectthan suppor

7、tvectormachine(SVM)inlow-dimensionalfeature.Especiallywhenthe occlusionhappensitachievesasatisfiedeffect.d.CombinedCamShiftalgorithmwithKalmanpredictionformovinghuman tracking.CamShiftalgorithmisimprovedbasedontheMeanShiftalgorithm.Ithas theadvantagesofsimplecalculatio

8、nandstrongrobustness.ThroughtheKalmanfilter forecastthehumanmovementparameters,thisthesisovercomestracklossthatcaused

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。