欢迎来到天天文库
浏览记录
ID:23232328
大小:5.28 MB
页数:160页
时间:2018-11-04
《基于视觉的选煤厂智能监控系统研究》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、AbstractThecoalsecurityhasattractedmuchattentionrecently.Coaldressingisanessentialprocessincoalproduction,whereaccidentsoccurringfrequently.Thisthesisaddsvisualelementstotheexistingvideosurveillancesystemofcoalpreparationplant.Upgradeittoanintelligentmonitoringsystemwh
2、ichcancarryonhumanmovementdetection,trackindependently,andalarmwhensomethingabnormal,etc.Themiantaskofthisthesisincludes:a.Movingtargetdetection.Takeimagenoiseprocessingforvideoframe.It’sthroughthebackgroundsubtractionthatbasedonmixtureGaussianmodeltodetectmotiontarget
3、,thenaccomplishtargetsegmentationroughlyaccordingtotheproportionofhumanbody.b.Featureextractionofhumanimagebasedon6-LBPandHOG.Thisthesiselaboratesandmakesuseoftwofeatureextractionmethods,onesistheHOGfeatureswhichbasedontheedgegradientofappearanceandoutlineoflocaltarget
4、,andtheotheroneistheLBPfeaturewhichbasedonthecolorandtextureinformationoflocalarea.Anotherfeatureextractionmethod,e-LBPisproposedonthebasisofthetraditionalLBPfeatureextractionmethods,removepartoftheredundantinformationandretainmoreedgeprofileinformationofhumanbody.Fina
5、lly,usethePCAmethodtoreducethefeaturedimension.ExperimentsshowthatthefeatureextractionmethodbasedonHOGcombiningwith6-LBPfeaturehasgoodcharacterizationresultforthehumanbody.c.Thedesignofhumanclassifierviasparserepresentation.Consideringthe sparserepresentationtheoryhasd
6、iscriminationwhichcanchoosetheeffectivesubset andrejectinvalidsubset,thethesisusesparserepresentationmethodthatgetsthe sparsesolutionsvia-minimizationtodesignthehumanclassifier.Experiments showthatthehumanclassifiersbasedonsparserepresentationhasbettereffectthan suppor
7、tvectormachine(SVM)inlow-dimensionalfeature.Especiallywhenthe occlusionhappensitachievesasatisfiedeffect.d.CombinedCamShiftalgorithmwithKalmanpredictionformovinghuman tracking.CamShiftalgorithmisimprovedbasedontheMeanShiftalgorithm.Ithas theadvantagesofsimplecalculatio
8、nandstrongrobustness.ThroughtheKalmanfilter forecastthehumanmovementparameters,thisthesisovercomestracklossthatcaused
此文档下载收益归作者所有