欢迎来到天天文库
浏览记录
ID:23083436
大小:24.18 KB
页数:18页
时间:2018-11-04
《北师大版高中数学必修2全部教案》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、自从人类进入商品经济社会以来,贸易即已成为人们日常活动的主要部分,并成为一国经济增长的主动力。国际分工的深化、大量国际统一标准规则的建立北师大版高中数学必修2全部教案 篇一:北师大版高中数学必修2第一章《立体几何初步》全部教案 北师大版高中数学必修2第一章《立体几何初步》全部教案 法门高中姚连省 简单几何体 第一课时简单旋转体 一、教学目标:1.知识与技能:(1)通过实物操作,增强学生的直观感知。(2)能根据几何结构特征对空间物体进行分类。(3)会用语言概述圆柱、圆锥、圆台、球的结构特征。(4)会表示有关于几何体以及柱、锥、台的分类。2.过程与方法:(1)让学生通过直观感受空间物体
2、,从实物中概括出圆柱、圆锥、圆台、球的结构特征。(2)让学生观察、讨论、归纳、概括所学的知识。 3.情感态度与价值观:(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。(2)培养学生的空间想象能力和抽象括能力。 二、教学重点、难点 重点:让学生感受大量空间实物及模型、概括出圆柱、圆锥、圆台、球的结构特征。 难点:圆柱、圆锥、圆台、球的结构特征的概括。随着信息化和全球化的发展,国家及地区之间的贸易也已成为拉动一国经济的三驾马车之一,甚至是三驾马车之首,奥巴马政府成立之日起自从人类进入商品经济社会以来,贸易即已成为人们日常活动的主要部分,并成为一国
3、经济增长的主动力。国际分工的深化、大量国际统一标准规则的建立 三、教学方法 (1)学法:观察、思考、交流、讨论、概括。(2)教法:探析讨论法。 四、教学过程: (一)、新课导入:1.讨论:经典的建筑给人以美的享受,其中奥秘为何?世间万物,为何千姿百态?2.提问:小学与初中在平面上研究过哪些几何图形?在空间范围上研究过哪些?3.导入:进入高中,在必修②的第一、二章中,将继续深入研究一些空间几何图形,即学习立体几何,注意学习方法:直观感知、操作确认、思维辩证、度量计算. (二)、研探新知: (Ⅰ)、空间几何体的类型 问题提出: 1.在平面几何中,我们认识了三角形,正方形,矩形,菱形
4、,梯形,圆,扇形等平面图形.那么对空间中各种各样的几何体,我们如何认识它们的结构特征? 2.对空间中不同形状、大小的几何体我们如何理解它们的联系和区别? 探究:空间几何体的类型随着信息化和全球化的发展,国家及地区之间的贸易也已成为拉动一国经济的三驾马车之一,甚至是三驾马车之首,奥巴马政府成立之日起自从人类进入商品经济社会以来,贸易即已成为人们日常活动的主要部分,并成为一国经济增长的主动力。国际分工的深化、大量国际统一标准规则的建立 思考1:在我们周围存在着各种各样的物体,它们都占据着空间的一部分.如果我们只考虑这些物体的形状和大小,而不考虑其他因素,那么由这些抽象出来的空间图形就叫做空间
5、几何体.你能列举那些空间几何体的实例? 思考2:观察下列图片,你知道这图片在几何中分别叫什么名称吗? 思考3:如果将这些几何体进行适当分类,你认为可以分成那几种类型? 思考4:图(2)(5)(7)(9)(13)(14)(15)(16)有何共同特点?这些几何体可以统一叫什么名称?多面体 思考5:图(1)(3)(4)(6)(8)(10)(11)(12)有何共同特点?这些几何体可以统一叫什么名称?旋转体 思考6:一般地,怎样定义多面体?围成多面体的各个多边形,相邻两个多边形的公共边,以及这些公共边的公共顶点分别叫什么名称? 由若干个平面多边形围成的几何体叫做多面体. 思考7:一般地,怎
6、样定义旋转体? 体叫做旋转体。 (Ⅱ)、探究简单旋转体的结构特征 1.探究圆柱、圆锥的结构特征: ①讨论:圆柱、圆锥如何形成? ②定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体叫圆柱; 以直角三角形的一条直角边为旋转轴,其余两边旋转所成的曲面所围成的几何体叫圆锥.随着信息化和全球化的发展,国家及地区之间的贸易也已成为拉动一国经济的三驾马车之一,甚至是三驾马车之首,奥巴马政府成立之日起自从人类进入商品经济社会以来,贸易即已成为人们日常活动的主要部分,并成为一国经济增长的主动力。国际分工的深化、大量国际统一标准规则的建立 →列举生活中的棱柱实例→结合图形认
7、识:底面、轴、侧面、母线、高.→表示方法③观察书P2若干图形,找出相应几何体;举例:生活中的柱体、锥体. 2、探究圆台的结构特征: ①定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分叫做圆台. →列举生活中的实例结合图形认识:上下底面、侧面、侧棱(母线)、顶点、高. ②讨论:圆台的表示?圆台可如何旋转而得? ③讨论:圆台分别具有一些什么几何性质?圆台:两底面是两个半径不同的
此文档下载收益归作者所有