欢迎来到天天文库
浏览记录
ID:22633462
大小:502.00 KB
页数:6页
时间:2018-10-30
《诱导公式练习题》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、诱导公式练习题一、选择题1.sin的值是()A.B.-C.D.-2.已知的值为( )A.B.C.D.3.已知tan,是关于x的方程x2-kx+k2-3=0的两个实根,且3π<<,则cos+sin= ( )A.B.C.-D.-4.已知tan=2,,则3sin2-cossin+1= ( )A.3B.-3C.4D.-45.在△ABC中,若sinA,cosA是关于x的方程3x2-2x+m=0的两个根,则△ABC是 ( )A.钝角三角形B.直角三角形C.锐角三角形D.不能确定6.若,则的值为()A.B.C.D.7.已知,则的值为()A.B.-C.D.-
2、8.定义某种运算,运算原理如上图所示,则式子的值为()A.4B.8C.11D.139.若,则计算所得的结果为()A.B.C.D.10.已知,则是第()象限角.A.一B.二C.三D.四11.已知sinx=2cosx,则sin2x+1=( )(A) (B) (C) (D)试卷第1页,总2页12.设,且,则( )A.B.C.D.二、填空题13.已知.角的终边与单位圆交点的横坐标是,则的值是___.14.化简:15.已知,且,求的值。16.已知tanθ=2,则=__________.三、解答题17.(1)化简=;(2)若,求的值.18.已知,且,求
3、的值。19.化简:.20.已知在△ABC中,sinA+cosA=.(1)求sinA·cosA;(2)判断△ABC是锐角三角形还是钝角三角形;(3)求tanA的值.21.已知00,即tan+=k=2,解之得tanα=1,所以sin=cos=∴cos+sin=-4.A3sin2-cossin+1=4sin2-cossin+
4、cos2==35.A∵sinA,cosA是关于x的方程3x2-2x+m=0的两个根∴sinA+cosA=∴(sinA+cosA)2=1+2sinAcosA=即sinAcosA=-∵0o0,所以cosA<0,即90o5、考点:诱导公式及三角函数在各个象限的符号.11.B【解析】【思路点拨】由sinx=2cosx可得tanx,将所求式子弦化切代入求解.解:由sinx=2cosx得tanx=2,而sin2x+1=2sin2x+cos2x====.12.C,,,,故选C.考点:1.二倍角公式;2.三角函数的化简;3.解三角不等式.13.由角的终边与单位圆交点的横坐标是,即.由于.所以.考点:1.三角函数的定义.2.三角函数的诱导公式.14.根据诱导公式:奇变偶不变,符号看象限进行化简考点:诱导公式15.试题分析:根据诱导公式进行化简试题解析:原式=,又因为,,根据解得,=.考点:6、诱导公式化简16.-2答案第3页,总4页==-2.17.(1);(2).试题分析:(1)由诱导公式化简可得,牢记诱导公式“奇变偶不变,符号看象限”;(2)将正余弦转化为正切的形式,可得.试题解析:解:(1),8分(每个公式2分,即符号1分,化对1分)(2),12分(每化对1个得1分)若,则,14分(说明:用其他方法做的同样酌情给分)考点:诱导公式,同角间的基本关系式.18.试题分析:根据诱导公式,由已知得,确定正负数,在根据公式求解.,又因为,,那么.即考点:1.诱导公式;2.三角函数的化简.19..试题分析:本小题主要考查三角函数的诱导公式、同角三角函数的7、基本关系式及辅助角公式,属于容易题.根据诱导公式及同角三角函数的商数关系:进行展开运算得到,再运用辅助角公式(其中)或运用两角和差公式进行化简即可.答案第3页,总4页试题解析:4分8分10分.考点:1.诱导公式;2.同角三角函数的基本关系式;3.辅助角公式(两角和差公式);4.三角恒等变换.20.(1)-(2)钝角三角形.(3)-(1)因为sinA+cosA=①,两边平方得1+2sinAcosA=,所以sinA·cosA=-.(2)由(1)sinAcosA=-<0,且08、sA)2=1-2sinAcosA=1+=.又sinA
5、考点:诱导公式及三角函数在各个象限的符号.11.B【解析】【思路点拨】由sinx=2cosx可得tanx,将所求式子弦化切代入求解.解:由sinx=2cosx得tanx=2,而sin2x+1=2sin2x+cos2x====.12.C,,,,故选C.考点:1.二倍角公式;2.三角函数的化简;3.解三角不等式.13.由角的终边与单位圆交点的横坐标是,即.由于.所以.考点:1.三角函数的定义.2.三角函数的诱导公式.14.根据诱导公式:奇变偶不变,符号看象限进行化简考点:诱导公式15.试题分析:根据诱导公式进行化简试题解析:原式=,又因为,,根据解得,=.考点:
6、诱导公式化简16.-2答案第3页,总4页==-2.17.(1);(2).试题分析:(1)由诱导公式化简可得,牢记诱导公式“奇变偶不变,符号看象限”;(2)将正余弦转化为正切的形式,可得.试题解析:解:(1),8分(每个公式2分,即符号1分,化对1分)(2),12分(每化对1个得1分)若,则,14分(说明:用其他方法做的同样酌情给分)考点:诱导公式,同角间的基本关系式.18.试题分析:根据诱导公式,由已知得,确定正负数,在根据公式求解.,又因为,,那么.即考点:1.诱导公式;2.三角函数的化简.19..试题分析:本小题主要考查三角函数的诱导公式、同角三角函数的
7、基本关系式及辅助角公式,属于容易题.根据诱导公式及同角三角函数的商数关系:进行展开运算得到,再运用辅助角公式(其中)或运用两角和差公式进行化简即可.答案第3页,总4页试题解析:4分8分10分.考点:1.诱导公式;2.同角三角函数的基本关系式;3.辅助角公式(两角和差公式);4.三角恒等变换.20.(1)-(2)钝角三角形.(3)-(1)因为sinA+cosA=①,两边平方得1+2sinAcosA=,所以sinA·cosA=-.(2)由(1)sinAcosA=-<0,且08、sA)2=1-2sinAcosA=1+=.又sinA
8、sA)2=1-2sinAcosA=1+=.又sinA
此文档下载收益归作者所有