哥德尔定理及其哲学义蕴

哥德尔定理及其哲学义蕴

ID:21207813

大小:64.00 KB

页数:8页

时间:2018-10-20

哥德尔定理及其哲学义蕴  _第1页
哥德尔定理及其哲学义蕴  _第2页
哥德尔定理及其哲学义蕴  _第3页
哥德尔定理及其哲学义蕴  _第4页
哥德尔定理及其哲学义蕴  _第5页
资源描述:

《哥德尔定理及其哲学义蕴 》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、哥德尔定理及其哲学义蕴1.哥德尔其人假如让人们列举出20世纪影响人类思想的十大伟人,恐怕爱因斯坦(AlbertEinstein)、图灵(AlantTuring)、哥德尔(KurtGödel)和凯恩斯(JohnKeynes)应榜上有名,事实上,这四位也恰是2002年美国《时代周刊》上列出的“20世纪震撼人类思想界的四大伟人”,足见这四位大家思想之重要而深远。然而,对于物理学家爱因斯坦、理论计算机之父图灵,以及经济学家凯恩斯的工作,一般人总还略知一二,但大多数人对作为数学家和逻辑学家的哥德尔的思想就知之不祥,更知之不确了。库尔特.哥德尔1

2、906年出生在摩拉维亚的布尔诺城,是一个生活条件属中产阶级的奥地利日尔曼裔家庭的第二个儿子,父亲是一家纺织厂的合伙经营人,母亲是受过良好教育的家庭妇女。1924年哥德尔入维也纳大学学习,最初主修物理和数学,后来在维也纳小组的激励下开始学习逻辑。1930年获哲学博士学位,1933年获维也纳大学执教资格。1940年迁居美国任普林斯顿研究院研究员,1948年加入美国国籍,1976年退休,1978年由于精神紊乱死于拒绝进食造成的营养枯竭。哥德尔的一生可以说是倾力献身基础理论研究的一生,他的学术贡献基本上是在数学、逻辑和哲学领域。1929-1938年间哥

3、德尔作出数理逻辑领域三大贡献:证明一阶谓词演算的完全性;证明算术形式系统的不完全性;证明连续统假设和集合论公理的相对一致性,这些结果不仅使逻辑学发生了革命,而且对数学、哲学、计算机和认知科学都有非常重大的影响。特别是电子计算机诞生之后,哥德尔的不完全性定理的深刻性更加受到学界的关注。只是稍稍出乎人们意料的是,作出这几个划时代结果后,自1940年以后,哥德尔除了继续思考一些集合论问题,有5年时间热中相对论并得到一个受爱因斯坦赞赏的结果外,大部分时间倾注了哲学问题的研究。他一生著述很少,极少公开演讲,只出版过一部著作,发表文字不及300页,从未构造

4、过任何完整的理论体系,甚至没有一个真正意义上自己的学生,他的大部分思想记录在手稿、私人通信和谈话记录中。哥德尔曾被许多人看作带有神秘色彩的人物,一方面是因为他的不完全性定理的逻辑外衣使大多数人难觅其思想的内在义蕴,另一方面也因为对于他的个性和精神状况流传着一些坊间神话。但是可以肯定的,哥德尔不仅以精湛优雅的工作作出了令世人瞩目的科学贡献,还以卓然深刻的思想为世人留下一笔丰厚的哲学遗产。哥德尔一生特立独行,始终如一地将一流的人格品质、高远的科学鉴赏力、超凡的创造性和至为严谨的学风融为一体,倾其全力献身基础理论研究工作,在这个充满竞争的世界上,他完

5、全采取了一种“超然于竞争之上”的生活态度。王浩曾将哥德尔与爱因斯坦相提并论,称他们是哲人科学家中的“稀有品种”。到目前为止,由一流数学家和逻辑学家组成的编委会负责编辑出版的《哥德尔文集》已经于1986、1990、1995年出版了前三卷,其他各卷还将陆续出版,借助《哥德尔文集》,我们必将逐步走进哥德尔的精神世界,进一步理解其思想的博大精深。2.哥德尔的不完全性定理哥德尔思想最深刻地体现在为世人称道的不完全性定理之中。为了理解这一定理的深刻内涵,我们首先了解一下一阶谓词逻辑的完全性问题。我们知道,自然语言中包含着各种隐喻的成分和模糊之处,在使用中常

6、常需要依赖于使用语言的语境,用自然语言进行推理往往会产生歧义,带来意义的不确定性,因此在莱布尼兹时代,逻辑学家们就希望引进一套意义单一明确的人工符号,构造一套形式语言来严格、清晰地整理日常推理和数学推理。为此目的,1879年弗雷格(G.Frege)提出第一个初等逻辑的形式系统(未完全形式化),1910年罗素(B.Russell)在《数学原理》中给出了一阶谓词逻辑的形式系统PM,1928年希尔伯特(D.Hilbert)和阿克曼(an)又引进了形式系统HA,基本特征都是引进了一套人工语言代替自然语言。一般来讲,在一个形式系统中,各种陈述都表示成有穷

7、长度的符号串,系统的形成规则指明什么样的符号串是合法的公式,一些符号串被当作公理。系统中还包括一系列推理规则,指明什么是系统中定理的证明。一个证明就是从公理出发对公式变形而形成的有穷长的公式序列,序列中的每一个公式,或者是公理,或者是由在前的公式依照推理规则形成的公式,而且系统中每一个定理都是这样经过有穷步骤得到的结果。到了20世纪20年代,这三个系统已经为逻辑学家们所普遍接受。问题是,这样的形式系统是否能囊括所有的逻辑真理?于是,希尔伯特1928年明确提出问题,证明一阶谓词逻辑系统具有完全性。一年以后,哥德尔在他1929年完成的博士论文中证明

8、,包括弗雷格、罗素和希尔伯特-阿克曼的一阶谓词逻辑的形式系统,都具有一种语义完全性,即所有普遍有效式都可在一阶谓词逻辑系统中作为定理得到证明,所谓普遍

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。