资源描述:
《2012江西理数试题答案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2012年江西卷(理数)详细解析一、选择题:1.C【解析】本题考查集合的概念及元素的个数.容易看出只能取-1,1,3等3个数值.故共有3个元素.【点评】集合有三种表示方法:列举法,图像法,解析式法.集合有三大特性:确定性,互异性,无序性.本题考查了列举法与互异性.来年需要注意集合的交集等运算,Venn图的考查等.2.D【解析】本题考查常有关对数函数,指数函数,分式函数的定义域以及三角函数的值域.函数的定义域为,而答案中只有的定义域为.故选D.[来源:Zxxk.Com]【点评】求函数的定义域的依据就是
2、要使函数的解析式有意义的自变量的取值范围.其求解根据一般有:(1)分式中,分母不为零;(2)偶次根式中,被开方数非负;(3)对数的真数大于0:(4)实际问题还需要考虑使题目本身有意义.体现考纲中要求了解一些简单函数的定义域,来年需要注意一些常见函数:带有分式,对数,偶次根式等的函数的定义域的求法.3.B【解析】本题考查分段函数的求值.[来源:学.科.网]因为,所以.所以.【点评】对于分段函数结合复合函数的求值问题,一定要先求内层函数的值,因为内层函数的函数值就是外层函数的自变量的值.另外,要注意自变
3、量的取值对应着哪一段区间,就使用哪一段解析式,体现考纲中要求了解简单的分段函数并能应用,来年需要注意分段函数的分段区间及其对应区间上的解析式,千万别代错解析式.4.D【解析】本题考查三角恒等变形式以及转化与化归的数学思想.因为,所以..【点评】本题需求解正弦值,显然必须切化弦,因此需利用公式转化;另外,在转化过程中常与“1”互相代换,从而达到化简的目的;关于正弦、余弦的齐次分式,常将正弦、余弦转化为正切,即弦化切,达到求解正切值的目的.体现考纲中要求理解三角函数的基本关系式,二倍角公式.来年需要注意
4、二倍角公式的正用,逆用等.5.B【解析】本题以命题的真假为切入点,综合考查了充要条件,复数、特称命题、全称命题、二项式定理等.(验证法)对于B项,令,显然,但不互为共轭复数,故B为假命题,应选B.【点评】体现考纲中要求理解命题的概念,理解全称命题,存在命题的意义.来年需要注意充要条件的判断,逻辑连接词“或”、“且”、“非”的含义等.6.C【解析】本题考查归纳推理的思想方法.观察各等式的右边,它们分别为1,3,4,7,11,…,[来源:学科网ZXXK]发现从第3项开始,每一项就是它的前两项之和,故等式
5、的右边依次为1,3,4,7,11,18,29,47,76,123,…,[来源:Z
6、xx
7、k.Com]故【点评】归纳推理常常可借助前几项的共性来推出一般性的命题.体现考纲中要求了解归纳推理.来年需要注意类比推理等合情推理.7.D【解析】本题主要考查两点间的距离公式,以及坐标法这一重要的解题方法和数形结合的数学思想.[来源:Z。xx。k.Com][来源:学科网]不失一般性,取特殊的等腰直角三角形,不妨令,则,,,,所以.【点评】对于非特殊的一般图形求解长度问题,由于是选择题,不妨尝试将图形特殊化,以方便
8、求解各长度,达到快速求解的目的.体现考纲中要求掌握两点间的距离公式.来年需要注意点到直线的距离公式.[来源:Z#xx#k.Com]8.B【解析】本题考查线性规划知识在实际问题中的应用,同时考查了数学建模的思想方法以及实践能力.设黄瓜和韭菜的种植面积分别为x,y亩,总利润为z万元,则目标函数为.线性约束条件为 即作出不等式组表示的可行域,易求得点.[来源:学科网][来源:学,科,网]平移直线,可知当直线经过点,即时,z取得最大值,且(万元).故选B.【点评】解答线性规划应用题的一般步骤可归纳为:(1)
9、审题——仔细阅读,明确有哪些限制条件,目标函数是什么?(2)转化——设元.写出约束条件和目标函数;(3)求解——关键是明确目标函数所表示的直线与可行域边界直线斜率间的关系;(4)作答——就应用题提出的问题作出回答.体现考纲中要求会从实际问题中抽象出二元线性规划.来年需要注意简单的线性规划求最值问题.9.A【解析】本题考查统计中的平均数,作差法比较大小以及整体思想.由统计学知识,可得,[来源:Z。xx。k.Com].,所以.所以故.[来源:学科网ZXXK]因为,所以.所以.即.[来源:Z+xx+k.C
10、om]【点评】要牢固掌握统计学中一些基本特征:如平均数,中位数,方差,标准差等的求法.体现考纲中要求会用样本的基本数字特征估计总体的基本数字特征.来年需要注意频率分布直方图中平均值,标准差等的求解等.[来源:学科网]10.A【解析】本题综合考查了棱锥的体积公式,线面垂直,同时考查了函数的思想,导数法解决几何问题等重要的解题方法.(定性法)当时,随着的增大,观察图形可知,单调递减,且递减的速度越来越快;当时,随着的增大,观察图形可知,单调递减,且递减的速度越来越慢;再观