欢迎来到天天文库
浏览记录
ID:1756108
大小:163.00 KB
页数:9页
时间:2017-11-13
《函数值域专题最新》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、函数值域求法专题高考要求:函数的值域及其求法是近几年高考考查的重点内容之一本节主要帮助考生灵活掌握求值域的各种方法,并会用函数的值域解决实际应用问题1.重难点归纳(1)求函数的值域此类问题主要利用求函数值域的常用方法配方法、分离变量法、单调性法、图像法、换元法、不等式法等无论用什么方法求函数的值域,都必须考虑函数的定义域(2)函数的综合性题目此类问题主要考查函数值域、单调性、奇偶性、反函数等一些基本知识相结合的题目此类问题要求考生具备较高的数学思维能力和综合分析能力以及较强的运算能力在今后的命题趋势中综合性题型仍会成为热点和重点,并可以逐渐加强(
2、3)运用函数的值域解决实际问题此类问题关键是把实际问题转化为函数问题,从而利用所学知识去解决此类题要求考生具有较强的分析能力和数学建模能力在函数的三要素中,定义域和值域起决定作用,而值域是由定义域和对应法则共同确定。研究函数的值域,不但要重视对应法则的作用,而且还要特别重视定义域对值域的制约作用。确定函数的值域是研究函数不可缺少的重要一环。对于如何求函数的值域,是学生感到头痛的问题,它所涉及到的知识面广,方法灵活多样,在高考中经常出现,占有一定的地位,若方法运用适当,就能起到简化运算过程,避繁就简,事半功倍的作用。1.直接观察法对于一些比较简单的
3、函数,其值域可通过观察得到。例1.求函数的值域。解:∵∴显然函数的值域是:变式1.求函数的值域。解:∵故函数的值域是:2.配方法配方法是求二次函数值域最基本的方法之一。例2.求函数的值域。解:将函数配方得:∵由二次函数的性质可知:当x=1时,,当时,故函数的值域是:[4,8]3.判别式法例3.求函数的值域。解:原函数化为关于x的一元二次方程(1)当时,解得:(2)当y=1时,,而故函数的值域为变式3.求函数的值域。解:两边平方整理得:(1)∵∴解得:但此时的函数的定义域由,得由,仅保证关于x的方程:在实数集R有实根,而不能确保其实根在区间[0,2
4、]上,即不能确保方程(1)有实根,由求出的范围可能比y的实际范围大,故不能确定此函数的值域为。可以采取如下方法进一步确定原函数的值域。∵代入方程(1)解得:即当时,原函数的值域为:注:由判别式法来判断函数的值域时,若原函数的定义域不是实数集时,应综合函数的定义域,将扩大的部分剔除。4.反函数法直接求函数的值域困难时,可以通过求其原函数的定义域来确定原函数的值域。例4.求函数值域。解:由原函数式可得:则其反函数为:,其定义域为:故所求函数的值域为:变式4.求函数的值域。解:由得故函数的值域为5.函数有界性法直接求函数的值域困难时,可以利用已学过函数
5、的有界性,反客为主来确定函数的值域。例5.求函数的值域。解:由原函数式可得:∵∴解得:故所求函数的值域为变式5.求函数的值域。解:由原函数式可得:,可化为:即∵∴即解得:故函数的值域为6.函数单调性法例6.求函数的值域。解:令则在[2,10]上都是增函数所以在[2,10]上是增函数当x=2时,当x=10时,故所求函数的值域为:变式6.求函数的值域。解:原函数可化为:令,显然在上为无上界的增函数所以,在上也为无上界的增函数所以当x=1时,有最小值,原函数有最大值显然,故原函数的值域为7.换元法通过简单的换元把一个函数变为简单函数,其题型特征是函数解
6、析式含有根式或三角函数公式模型,换元法是数学方法中几种最主要方法之一,在求函数的值域中同样发挥作用。例7.求函数的值域。解:令,则∵又,由二次函数的性质可知当时,当时,故函数的值域为变式7(1).求函数的值域。解:因即故可令∴∵故所求函数的值域为变式7(2).求函数,的值域。解:令,则由且可得:∴当时,,当时,故所求函数的值域为。变式7(3).求函数的值域。解:由,可得故可令∵当时,当时,故所求函数的值域为:8.数形结合法其题型是函数解析式具有明显的某种几何意义,如两点的距离公式直线斜率等等,这类题目若运用数形结合法,往往会更加简单,一目了然,赏
7、心悦目。例8.求函数的值域。解:原函数可化简得:上式可以看成数轴上点P(x)到定点A(2),间的距离之和。由上图可知,当点P在线段AB上时,当点P在线段AB的延长线或反向延长线上时,故所求函数的值域为:变式8(1).求函数的值域。解:原函数可变形为:上式可看成x轴上的点到两定点的距离之和,由图可知当点P为线段与x轴的交点时,,故所求函数的值域为变式8(2).求函数的值域。解:将函数变形为:上式可看成定点A(3,2)到点P(x,0)的距离与定点到点的距离之差。即:由图可知:(1)当点P在x轴上且不是直线AB与x轴的交点时,如点,则构成,根据三角形两
8、边之差小于第三边,有即:(2)当点P恰好为直线AB与x轴的交点时,有综上所述,可知函数的值域为:注:由例17,18可知,求两距离之和时,
此文档下载收益归作者所有