欢迎来到天天文库
浏览记录
ID:17443682
大小:52.10 KB
页数:33页
时间:2018-08-31
《浙教版 圆的基本性质 教案》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、浙教版圆的基本性质教案本文由334700377贡献doc文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。3.1圆(1))教学目标1.理解圆、弧、弦等有关概念.2.学会圆、弧、弦等的表示方法.3.掌握点和圆的位置关系及其判定方法.4.进一步培养学生分析问题和解决问题的能力.5.用生活和生产中的实例激发学生学习兴趣从而唤起学生尊重知识尊重科学,更加热爱生活.教学重点弦和弧的概念、弧的表示方法和点与圆的位置关系.教学难点点和圆的位置关系及判定.教学方法操作、讨论、归纳、巩固教学过程1.展示幻灯片,教师指出,日常生活和生产中的许多问题都与圆有关
2、.如(1)一个破残的轮片(课本P62图),怎样测出它的直径?如何补全?(2)圆弧形拱桥(课本P63图),设计时桥拱圈()的半径该怎样计算?(3)如何躲避圆弧形暗礁区(课本P60、P74图),不使船触礁?(4)自行车轮胎为什么做成圆的而不做成方的?2.上述这些问题都与圆的问题有关,在小学我们已经认识过圆,回会用圆规画圆,问:圆上的点有什么特性吗?圆、圆心、圆的半径、圆的直径各是怎样定义的?这节课我们用另一种方法来定义圆的有关概念。(板书)3.1圆3.师生一起用圆规画圆:取一根绳子,把一端固定在画板上,另一端缚在粉笔上,然后拉紧绳子,并使它绕固定的一端旋转一周,即得一个
3、圆(课本图3—1、3-2).归纳:在同一平面内,一条线段OP绕它固定的一个端点O旋转一周,另一个端点P所经过的封闭曲线叫做圆.定点O就是圆心,线段OP就是圆的半径.以点O为圆心的圆,记作“⊙O”,读作“圆O”.如图所示.4圆的有关概念(如图3-3)(1)连结圆上任意两点的线段叫做弦,如图BC.经过圆心的弦是直径,图中的AB。直径等于半径的2倍.(2)圆上任意两点间的部分叫做圆弧,简称弧.弧用符号“⌒”表示.小于半圆的弧叫做劣弧,如图中以B、C为端点的劣弧记做“”;大于半圆的弧叫做优弧,优弧要用三个字母表示,如图中的.(3)半径相等的两个圆能够完全重合,我们把半径相等
4、的两个圆叫做等圆.例如,图中的⊙O1和⊙O2是等圆.圆心相同,半径不相等的圆叫做同心圆。(学生画同心圆)(4)完成P58做一做由上述问题提出:确定一个圆的两个必备条件是什么?说明:圆上各点到圆心的距离都相等,并且等于半径的长;反讨来,到圆心的距离等于半径长的点必定在圆上.即可以把圆看作是到定点的距离等于定长的点的集合。注意:说明一个圆时必须说清以谁为定点,以谁为定长。5.结论:一般地,如果P是圆所在平面内的一点,d表示P到圆心的距离,r表示圆的半径,那么就有:drP在圆外.6.例如图,在A地往北80m的B处有一幢房,西100m的C处
5、有一变电设施,在BC的中点D处有古建筑.因施工需要在A处进行一次爆破,为使房、变电设施、古建筑都不遭到破坏,问爆破影响面的半径应控制在什么范围内?分析:爆破影响面大致是圆形,正北方向线与正南方向线垂直.解:连结AD,由勾股定理得:BC2=AC2+AB2=1002+802=16400,∴BC==20(m).∴AD=BC=×20=10(m).∵10<10×7,AB=80m,AC=100m,∴AD6、用学生还是掌握的不怎样的好.3.1圆(2))教学目标①学生经历不在同一直线上的三点确定一个圆的探索过程②了解不在同一直线上的三点确定一个圆,以及过不在同一直线上的三点作圆的方法,了解并辨认三角形的外接圆、三角形的外心等概念③会画过不在同一条直线上的三点作圆教学重点、教学重点、工具①“不在同一直线上的三个点确定一个圆”来画图②“不在同一直线上的三个点确定一个圆”来解决实际问题③尺规教学难点对“不在同一直线上的三个点确定一个圆”中的存在性和唯一性的理解教学方法:类比启发教学辅助:投影片教学过程A、车床工人告诉了我们什么?、车床工人告诉了我们什么?问题:车间工人能将一个如7、图所示的破损的圆盘复原,你知道用什么办法吗?(根据学生的预习情况进行衔接教学)——指出标题——指出讨论1:三个点的位置在什么地“方?”讨论2:“三个点为什么会不在同一直线上?”讨论3:“画一个圆需要知道什么”上图中的圆心在什么位置?上图的圆的半径有多大?B、合作学习P60、探索:为什么一定要三个点?探索:为什么一定要三个点?1:经过一个已知点A能作多少个圆?结论:经过一个已知点A能作无数个圆经过一个已知点能作无数个圆!2:经过两个已知点A,B能作多少个圆?结论:经过两个已知点A,B能作无数个圆能作无数个圆!经过两个已知点讨论1:把这些圆的圆心用光滑线连接是什么图
6、用学生还是掌握的不怎样的好.3.1圆(2))教学目标①学生经历不在同一直线上的三点确定一个圆的探索过程②了解不在同一直线上的三点确定一个圆,以及过不在同一直线上的三点作圆的方法,了解并辨认三角形的外接圆、三角形的外心等概念③会画过不在同一条直线上的三点作圆教学重点、教学重点、工具①“不在同一直线上的三个点确定一个圆”来画图②“不在同一直线上的三个点确定一个圆”来解决实际问题③尺规教学难点对“不在同一直线上的三个点确定一个圆”中的存在性和唯一性的理解教学方法:类比启发教学辅助:投影片教学过程A、车床工人告诉了我们什么?、车床工人告诉了我们什么?问题:车间工人能将一个如
7、图所示的破损的圆盘复原,你知道用什么办法吗?(根据学生的预习情况进行衔接教学)——指出标题——指出讨论1:三个点的位置在什么地“方?”讨论2:“三个点为什么会不在同一直线上?”讨论3:“画一个圆需要知道什么”上图中的圆心在什么位置?上图的圆的半径有多大?B、合作学习P60、探索:为什么一定要三个点?探索:为什么一定要三个点?1:经过一个已知点A能作多少个圆?结论:经过一个已知点A能作无数个圆经过一个已知点能作无数个圆!2:经过两个已知点A,B能作多少个圆?结论:经过两个已知点A,B能作无数个圆能作无数个圆!经过两个已知点讨论1:把这些圆的圆心用光滑线连接是什么图
此文档下载收益归作者所有