欢迎来到天天文库
浏览记录
ID:1562734
大小:46.50 KB
页数:5页
时间:2017-11-12
《概率论的起源、发展和应用》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、概率论与数理统计课程报告概率论的起源、发展和应用作者:摘要:本文介绍了概率论的起源、发展,和概率论在自动控制、科学管理和保险赔偿等方面的应用应用。关键词:概率论,起源,发展,应用1引言 概率论是研究随机现象数量规律的数学分支。随机现象是相对于决定性现象而言的。在一定条件下必然发生某一结果的现象称为决定性现象。例如在标准大气压下,纯水加热到100℃时水必然会沸腾等。随机现象则是指在基本条件不变的情况下,一系列试验或观察会得到不同结果的现象。每一次试验或观察前,不能肯定会出现哪种结果,呈现出偶然性。例如,掷一硬币,可
2、能出现正面或反面,在同一工艺条件下生产出的灯泡,其寿命长短参差不齐等等。随机现象的实现和对它的观察称为随机试验。随机试验的每一可能结果称为一个基本事件,一个或一组基本事件统称随机事件,或简称事件。事件的概率则是衡量该事件发生的可能性的量度。虽然在一次随机试验中某个事件的发生是带有偶然性的,但那些可在相同条件下大量重复的随机试验却往往呈现出明显的数量规律。例如,连续多次掷一均匀的硬币,出现正面的频率随着投掷次数的增加逐渐趋向于1/2。又如,多次测量一物体的长度,其测量结果的平均值随着测量次数的增加,逐渐稳定于一常数
3、,并且诸测量值大都落在此常数的附近,其分布状况呈现中间多,两头少及某程度的对称性。大数定律及中心极限定理就是描述和论证这些规律的。在实际生活中,人们往往还需要研究某一特定随机现象的演变情况随机过程。例如,微小粒子在液体中受周围分子的随机碰撞而形成不规则的运动(即布朗运动),这就是随机过程。随机过程的统计特性、计算与随机过程有关的某些事件的概率,特别是研究与随机过程样本轨道(即过程的一次实现)有关的问题,是现代概率论的主要课题。2概率论的起源概率论的起源与赌博问题有关。16世纪,意大利的学者吉罗拉莫·卡尔达诺开始研
4、究掷骰子等赌博中的一些简单问题。17世纪中叶,当时的法国宫廷贵族里盛行着掷骰子游戏,游戏规则是玩家连续掷4次骰子,如果其中没有6点出现,玩家赢,如果出现一次6点,则庄家(相当于现在的赌场)赢。按照这一游戏规则,从长期来看,庄家扮演赢家的角色,而玩家大部分时间是输家,因为庄家总是要靠此为生的,因此当时人们也就接受了这种现象。后来为了使游戏更刺激,游戏规则发生了些许变化,玩家这回用2个骰子连续掷24次,不同时出现2个6点,玩家赢,否则庄家赢。当时人们普遍认为,2次出现6点的概率是一次出现6点的概率的1/6,因此6倍于
5、前一种规则的次数,也既是24次赢或输的概率与以前是相等的。然而事实却刚好相反,从长期来看,这回庄家处于输家的状态,于是他们去请教当时的数学家帕斯卡,求助其对这种现象作出解释,这个问题的解决直接推动了概率论的产生。3概率论的发展随着18、19世纪科学的发展,人们注意到在某些生物、物理和社会现象与机会游戏之间有某种相似性,从而由机会游戏起源的概率论被应用到这些领域中;同时这也大大推动了概率论本身的发展。使概率论成为数学的一个分支的奠基人是瑞士数学家j.伯努利,他建立了概率论中第一个极限定理,即伯努利大数定律,阐明了事
6、件的频率稳定于它的概率。随后棣莫弗和p.s.拉普拉斯 又导出了第二个基本极限定理(中心极限定理)的原始形式。拉普拉斯在系统总结前人工作的基础上写出了《分析的概率理论》,明确给出了概率的古典定义,并在概率论中引入了更有力的分析工具,将概率论推向一个新的发展阶段。19世纪末,俄国数学家p.l.切比雪夫、a.a.马尔可夫、a.m.李亚普诺夫等人用分析方法建立了大数定律及中心极限定理的一般形式,科学地解释了为什么实际中遇到的许多随机变量近似服从正态分布。20世纪初受物理学的刺激,人们开始研究随机过程。这方面a·n·柯尔莫
7、哥洛夫、n.维纳、a·a·马尔可夫、a·r·辛钦、p·莱维及w·费勒等人作了杰出的贡献。4概率论的应用(1)正态分布在自动控制中的应用饮料厂生产一种容量为300mI的罐饮料,自动包装线上大量数据表明,每容量是服从标准差为30ml的正态分布。了使每罐饮料少于300mI的产品不多10%,应把自动包装线控制的均值μ调到什么位置上?一台新的包装机价格是万元,但罐装的饮料的容量服从标准为75ml的正态分布,同样为了使每罐料少于300ml的产品不多于10%,应自动包装线控制的均值μ调节到什么位上?设X表示原自动包装线上一罐饮
8、料的量,则X~N(μ,302),若把自动包装的均值μ控制在300ml的位置上,则少300ml的饮料要占全部饮料的50%,这不合要求的。为此应把均值μ控制在比300ml大的位置上,其中μ必须满足概率程P{X<300}=0.1。,从而μ=338.4。即把自包装机的均值调节到3384的位置上才能保证少于300ml的饮料不多于10%,即平均每罐要多装38.4ml。如果投资10万元
此文档下载收益归作者所有