欢迎来到天天文库
浏览记录
ID:14406594
大小:145.50 KB
页数:7页
时间:2018-07-28
《9-1阻抗、导纳、向量模型》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、第九章正弦稳态电路的分析1讲授板书掌握复阻抗、复导纳的概念以及它们之间的等效变换。复阻抗、复导纳的概念以及它们之间的等效变换。复阻抗、复导纳的概念以及它们之间的等效变换1.组织教学5分钟3.讲授新课70分钟1)阻抗、导纳452)向量模型252.复习旧课5分钟向量法基础4.巩固新课5分钟5.布置作业5分钟一、一、学时:2二、班级:06电气工程(本)/06数控技术(本)三、教学内容:[讲授新课]:第九章阻抗导纳向量模型阻抗和导纳的概念以及对它们的运算和等效变换是线性电路正弦稳态分析中的重要内容。1.阻抗1)阻抗的定义 图9.1所示的无源线性一端口网络,当它在角频率为的正弦电源激励
2、下处于稳定状态时,端口的电压相量和电流相量的比值定义为该一端口的阻抗Z。即 单位:Ω 上式称为复数形式的欧姆定律,其中称为阻抗模,称为阻抗角。由于Z为复数,也称为复阻抗,这样图9.1所示的无源一端口网络可以用图9.2所示的等效电路表示,所以Z也称为一端口网络的等效阻抗或输入阻抗。图9.1无源线性一端口网络图9.2等效电路2)单个元件的阻抗 当无源网络内为单个元件时,等效阻抗分别为:a电阻b电容c电感图9.3单个元件的网络a图 b图 c图 说明Z可以是纯实数,也可以是纯虚数。3)RLC串联电路的阻抗图9.4RLC串联电路图9.5阻抗三角形 由KVL得:
3、 因此,等效阻抗为 其中R—等效电阻(阻抗的实部);X—等效电抗(阻抗的虚部);Z、R和X之间的转换关系为: 或 可以用图9.5所示的阻抗三角形表示。结论:对于RLC串联电路: (1)当ωL>1/ωC时,有X>0,φz>0,表现为电压领先电流,称电路为感性电路,其相量图(以电流为参考相量)和等效电路如图9.6所示;图9.6ωL>1/ωC时的相量图和等效电路 (2)对于RLC串联电路当ωL<1/ωC时,有X<0,φz<0,表现为电流领先电压,称电路为容性电路,其相量图(以电流为参考相量)和等效电路如图9.7所示;图9.7 ωL<1/ωC时的相量图和等效电路
4、 (3)当ωL=1/ωC时,有X=0,φz=0,表现为电压和电流同相位,此时电路发生了串联谐振,电路呈现电阻性,其相量图(以电流为参考相量)和等效电路如图9.8所示;图9.8 ωL=1/ωC时的相量图和等效电路(4)RLC串联电路的电压UR、UX、U构成电压三角形,它和阻抗三角形相似,满足:注:从以上相量图可以看出,正弦交流RLC串联电路中,会出现分电压大于总电压的现象。2.导纳 图9.1所示的无源线性一端口网络,当它在角频率为的正弦电源激励下处于稳定状态时,端口的电流相量和电压相量的比值定义为该一端口的导纳Y。即 单位:S 上式仍为复数形式的欧姆定律,其中称为导纳模
5、,称为导纳角。由于Y为复数,称为复导纳,这样图9.1所示的无源一端口网络可以用图9.9所示的等效电路表示,所以Y也称为一端口网络的等效导纳或输入导纳。图9.9无源线性一端口网络等效导纳3.复阻抗和复导纳的等效互换 同一个两端口电路阻抗和导纳可以互换,互换的条件为: 即:9.15串联电路和其等效的并联电路如图9.15的串联电路,它的阻抗为:其等效并联电路的导纳为:即等效电导和电纳为:同理,对并联电路,它的导纳为其等效串联电路的阻抗为:即等效电阻和电抗为: 例9-1电路如图(a)所示,已知:R=15Ω,L=0.3mH,C=0.2mF,求i,uR,uL,uC。例9—1图(a)
6、(b)(c)解:电路的相量模型如图(b)所示,其中: 因此总阻抗为 总电流为 电感电压为 电阻电压为 电容电压为 相量图如图(c)所示,各量的瞬时式为: 注意:UL=8.42>U=5,说明正弦电路中分电压的有效值有可能大于总电压的有效值。例9-2RL串联电路如图(a)所示,求在ω=106rad/s时的等效并联电路图(b)。例9—2图(a)(b) 解:RL串联电路的阻抗为: 导纳为: 得等效并联电路的参数 一、预习内容电路分析法二、作业
此文档下载收益归作者所有