资源描述:
《高三数学一轮复习资料——知识归纳》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、高三数学一轮复习:基础知识归纳第一部分集合1.理解集合中元素的意义是解决集合问题的关键:元素是函数关系中自变量的取值?还是因变量的取值?还是曲线上的点?…2.数形结合是解集合问题的常用方法:解题时要尽可能地借助数轴、直角坐标系或韦恩图等工具,将抽象的代数问题具体化、形象化、直观化,然后利用数形结合的思想方法解决3.(1)元素与集合的关系:,.(2)德摩根公式:.(3)注意:讨论的时候不要遗忘了的情况.(4)集合的子集个数共有个;真子集有–1个;非空子集有–1个;非空真子集有–2个.4.是任何集合的子集,是任何非空集合的真子集.5.集合
2、的表示法:列举法、描述法、图形表示法;6.集合的交并补运算,主要性质和运算率第二部分函数与导数1.映射:注意:①第一个集合中的元素必须有象;②一对一或多对一.2.函数值域的求法:①分析法;②配方法;③判别式法;④利用函数单调性;⑤换元法;⑥利用均值不等式;⑦利用数形结合或几何意义(斜率、距离、绝对值的意义等);⑧利用函数有界性(、、等);⑨平方法;⑩导数法3.复合函数的有关问题:(1)复合函数定义域求法:①若f(x)的定义域为[a,b],则复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出②若f[g(x)]的定义域为[a,b]
3、,求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域.(2)复合函数单调性的判定:①首先将原函数分解为基本函数:内函数与外函数②分别研究内、外函数在各自定义域内的单调性③根据“同性则增,异性则减”来判断原函数在其定义域内的单调性.4.分段函数:值域(最值)、单调性、图象等问题,先分段解决,再下结论。5.函数的奇偶性:⑴函数的定义域关于原点对称是函数具有奇偶性的必要条件⑵是奇函数;是偶函数.⑶奇函数在0处有定义,则⑷在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性⑸若所给函数的解析式较为复杂,应先等价变形
4、,再判断其奇偶性6.函数的单调性:⑴单调性的定义:①在区间上是增函数当时有;②在区间上是减函数当时有;⑵单调性的判定:①定义法:一般要将式子化为几个因式作积或作商的形式,以利于判断符号;②导数法(见导数部分);③复合函数法;④图像法注:证明单调性主要用定义法和导数法。7.函数的周期性:(1)周期性的定义:对定义域内的任意,若有(其中为非零常数),则称函数为周期函数,为它的一个周期。所有正周期中最小的称为函数的最小正周期。如没有特别说明,遇到的周期都指最小正周期。(2)三角函数的周期:①;②;③;④;⑤(3)与周期有关的结论:或的周期为
5、8.基本初等函数的图像与性质:㈠.⑴指数函数:;⑵对数函数:;⑶幂函数:(;⑷正弦函数:;⑸余弦函数:;(6)正切函数:;⑺一元二次函数:(a≠0);⑻其它常用函数:①正比例函数:;②反比例函数:;③函数㈡.⑴分数指数幂:;(以上,且).⑵.①;②;③;④.⑶.对数的换底公式:.对数恒等式:.9.二次函数:⑴解析式:①一般式:;②顶点式:,为顶点;③零点式:(a≠0).⑵二次函数问题解决需考虑的因素:①开口方向;②对称轴;③端点值;④与坐标轴交点;⑤判别式;⑥两根符号。二次函数的图象的对称轴方程是,顶点坐标是10.函数图象:⑴图象作法
6、:①描点法(特别注意三角函数的五点作图)②图象变换法③导数法⑵图象变换:①平移变换:ⅰ),———左“+”右“-”;ⅱ)———上“+”下“-”;①对称变换:ⅰ);ⅱ);ⅲ);ⅳ);②翻折变换:ⅰ)———(去左翻右)y轴右不动,右向左翻(在左侧图象去掉);ⅱ)———(留上翻下)x轴上不动,下向上翻(
7、
8、在下面无图象);11.函数图象(曲线)对称性的证明:(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;(2)证明函数与图象的对称性,即证明图象上任意点关于对称中心(对称轴)的对称点在的图象上,反之亦然。
9、注:①曲线C1:f(x,y)=0关于原点(0,0)的对称曲线C2方程为:f(-x,-y)=0;曲线C1:f(x,y)=0关于直线x=0的对称曲线C2方程为:f(-x,y)=0;曲线C1:f(x,y)=0关于直线y=0的对称曲线C2方程为:f(x,-y)=0;曲线C1:f(x,y)=0关于直线y=x的对称曲线C2方程为:f(y,x)=0②f(a+x)=f(b-x)(x∈R)y=f(x)图像关于直线x=对称;特别地:f(a+x)=f(a-x)(x∈R)y=f(x)图像关于直线x=a对称.③的图象关于点对称.特别地:的图象关于点对称.④函数
10、与函数的图象关于直线对称;函数与函数的图象关于直线对称。12.函数零点的求法:⑴直接法(求的根);⑵图象法;⑶二分法.(4)零点定理:若y=f(x)在[a,b]上满足f(a)·f(b)<0,则y=f(x)在(a,b)内至