当代物理学发展报告——非线性物理学与复杂性研究(中)

当代物理学发展报告——非线性物理学与复杂性研究(中)

ID:13456804

大小:55.50 KB

页数:13页

时间:2018-07-22

当代物理学发展报告——非线性物理学与复杂性研究(中)_第1页
当代物理学发展报告——非线性物理学与复杂性研究(中)_第2页
当代物理学发展报告——非线性物理学与复杂性研究(中)_第3页
当代物理学发展报告——非线性物理学与复杂性研究(中)_第4页
当代物理学发展报告——非线性物理学与复杂性研究(中)_第5页
资源描述:

《当代物理学发展报告——非线性物理学与复杂性研究(中)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、当代物理学发展报告——非线性物理学与复杂性研究(中)2007年05月27日18:00上一篇:http://hi.baidu.com/jhlb/blog/item/b46f55da33a6fddab7fd487e.html5.“蝴蝶效应”和“斯梅尔马蹄”无规性的源泉在于初始条件的选择。一个动力系统的行为或运动轨道决定于两个因素。一个是系统的运动演化所遵从的规律,如牛顿定律;一个是系统的初始状态,即初始条件。经典力学指出,一个确定性系统在给定了运动方程后,它的轨道就唯一地取决于初始条件,一组初始值只有一条轨道,这就是系统行为对初值的依赖性。但是,任何测量都是有误差的,所以任何时

2、候都不可能绝对精确地测定初始值。实验上给出的初值都只能是近似的。这个误差对系统的行为会不会有严重影响呢?经典力学断言,系统的行为或运动轨道对初值的依赖是不敏感的,知道了一个系统近似的初始条件,系统的行为就能够近似地计算出来。这就是说,从两组相接近的初值描绘出的两条轨道,会始终相互接近地在相空间里偕游并行,永远不会分道扬镳,泛泛的小影响不会积累起来形成一种大的效应。混沌研究却粉碎了传统科学中这种对近似性和运动的收敛性的信仰。处在混沌状态的系统,或者更一般地说对于一个非线性系统,运动轨道将敏感地依赖于初始条件。洛仑兹已经发现,从两组极相邻近的初始值出发的两条轨道,开始时似乎没有

3、明显的偏离,但经过足够长的时间后,就会呈现出显著的差异来(图5)。这就是说,初值的微小差异,在运动过程中会逐渐被放大,终会导致运动轨道的巨大偏差,以至于这种偏差要多大就有多大。在科学实验中,一种变化过程可能有一个临界点,在这一点上,一个微小的扰动可能被放大成一个重大的变化。而在混沌中,这种点无处不在,确定性系统初值的微小差异导致了系统整体的混沌后果。小的误差竟能带来巨大的灾难性后果,这一点早在1908年就被目光敏锐的庞加莱洞察到了。他在他的名著《科学与方法》中写道:我们觉察不到的极其轻微的原因决定着我们不能不看到的显著结果,于是我们说这个结果是由于偶然性。如果我们可以正确地

4、了解自然定律以及宇宙在初始时刻的状态,那么我们就能够正确地预言这个宇宙在后继时刻的状态。不过,即使自然定律对我们已无秘密可言,我们也只能近似地知道初始状态。如果情况容许我们以同样的近似度预见后继的状态,这就是我们所要求的一切,那我们便说该现象被预言到了,它受规律支配。但是,情况并非总是如此;可以发生这样的情况:初始条件的微小差别在最后的现象中产生了极大的差别;前者的微小误差促成了后者的巨大误差。预言变得不可能了,我们有的是偶然发生的现象①。这一段几乎是百年前的话,不正是我们近几十年才揭开的混沌来源之谜吗?洛仑兹从他关于长期天气预报的研究中悟出的正是这个道理。对于任何小块地区

5、气候变化的误测,都会导致全球天气预报的迅速失真。不论气象观测站的网点如何密集,都不可能覆盖整个地球和从地面到高空的每一高度。在一尺之遥的空间范围内的一点气象涨落,都可能迅速波及到一尺之外、十尺之外、百尺之外的空间,小误差通过一系列湍流式的链锁反应,集结起来而成十倍、百倍、千倍地膨胀扩大,终于使天气预报变成一派胡言,在跨洋隔洲的地区形成山雨欲来风满楼的景象。洛仑兹非常形象地比喻说:巴西亚马孙河丛林里一只蝴蝶扇动了几下翅膀,三个月后在美国的得克萨斯州引起了一场龙卷风。人们把洛仑兹的比喻戏称为“蝴蝶效应”。这个看法当时并不为气象学家们所接受。据说洛仑兹把“蝴蝶效应”说给他的一个朋

6、友以说明长期天气预报不可能时,他的朋友回答说“预报不会成为问题”,“现在是要搞气象控制”。洛仑兹却不这样看,他认为,人工改变气候当然是可能的;但是当你这样做时,你就无法预测它会产生什么后果。简单的确定性系统如何会导致长期行为对初值的敏感依赖性呢?理解这一点的关键是要理解混沌的几何特性,即由系统内在的非线性相互作用在系统演化过程中所造成的“伸缩”与“折叠”变换。美国拓扑学家斯梅尔(Smale,Stephen1930~)对此做出了重要贡献。斯梅尔是一个杰出的拓扑学家,本来在多维拓扑学的一些最奇特的问题上已经卓有成就。1958年,他开始对动力系统的微分方程进行深入研究,并发表了一

7、篇过于乐观的论文。他在这篇论文里提出了一个错误的猜想。他用极为严谨的数学语言论证说,一切动力系统最终都将进入一个并不十分奇异的行为;或者说,典型的动力学行为是定态的或周期的。虽然,一个动力系统可能会出现离奇古怪的性态,但斯梅尔认为这种性态不会是稳定的。后来斯梅尔曾回忆说:“我的过分乐观引导我在那篇论文里认为,几乎所有常微分方程系统都是这样一些(结构稳定的)系统!”①他说如果他多少了解些庞加莱、伯克霍夫等人的文献,他就不会有那种愚蠢的思想。1959年圣诞节后,斯梅尔一家正在巴西首都里约热内卢暂住,他接到了他的朋友莱文

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。