数列、极限、数学归纳法·用数学归纳法证明不等式

数列、极限、数学归纳法·用数学归纳法证明不等式

ID:1292218

大小:115.00 KB

页数:10页

时间:2017-11-09

数列、极限、数学归纳法·用数学归纳法证明不等式_第1页
数列、极限、数学归纳法·用数学归纳法证明不等式_第2页
数列、极限、数学归纳法·用数学归纳法证明不等式_第3页
数列、极限、数学归纳法·用数学归纳法证明不等式_第4页
数列、极限、数学归纳法·用数学归纳法证明不等式_第5页
资源描述:

《数列、极限、数学归纳法·用数学归纳法证明不等式》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、数列、极限、数学归纳法·用数学归纳法证明不等式·教案证明:(1)当n=1时,左=2,右=2,则等式成立.(2)假设n=k时(k∈N,k≥1),等式成立,即2+4+6+…+2k=k(k+1).当n=k+1时,2+4+6+…+2k+(k+1)所以n=k+1时,等式也成立.根据(1)(2)可知,对于任意自然数n,原等式都能成立.生甲:证明过程正确.生乙:证明方法不是数学归纳法,因为第二步证明时,没有应用归纳假设.师:从形式上看此种证明方法是数学归纳法,但实质在要证明n=k+1正确时,未用到归纳假设,直接采用等差数列求和公式,违背了数学归纳法的本质特点递推性,所以不

2、能称之为数学归纳法.因此告诫我们在运用数学归纳法证明时,不能机械套用两个步骤,在证明n=k+1命题成立时,一定要利用归纳假设.(课堂上讲评作业,指出学生作业中不妥之处,有利于巩固旧知识,为新知识的学习扫清障碍,使学生引以为戒,所谓温故而知新)(二)讲授新课师:在明确数学归纳法本质的基础上,我们来共同研究它在不等式证明中的应用.(板书)例1已知x>-1,且x≠0,n∈N,n≥2.求证:(1+x)n>1+nx.师:首先验证n=2时的情况.(板书)证:(1)当n=2时,左边=(1+x)2=1+2x+x2,右边=1+2x,因x2>0,则原不等式成立.(在这里,一定要

3、强调之所以左边>右边,关键在于x2>0是由已知条件x≠0获得,为下面证明做铺垫)

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。