欢迎来到天天文库
浏览记录
ID:11891337
大小:7.60 MB
页数:112页
时间:2018-07-14
《新高考物理解题方法技巧精讲》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、新高考物理解题方法和技巧精讲 数学不仅是解决物理问题的工具,数学方法更是物理学的研究方法之一。在物理解题中,可以运用数学方法,将物理问题转化为数学问题,将“物理模型”转化成“数学模型”,然后运用数学的方法进行求解或论证,再将数学结论回归到物理问题中进行验证,完成物理问题的求解。 一、函数模型 函数模型就是建立起所求量或所研究量与已知量或决定量之间的函数关系,然后运用函数的运算或性质进行运算或判断。这是物理解题中最常用的数学模型,一般用来解决最值问题或变量问题比较方便。 例1 一辆汽车在十字路口
2、等候红绿灯,当绿灯亮时汽车以3m/s2的加速度开始行驶,恰在这时一辆自行车以6m/s的速度匀速驶来,从后边赶过汽车。求汽车从路口开动后,在追上自行车之前经过多长时间两车相距最远?最远距离是多少? 分析与求解:设汽车起动后经时间t还未追上自行车,则汽车的位移为:s1=at2,自行车的位移为:s2=vt,二者间距为Δs=s2-s1=vt-at2。 带入已知数据,建立Δs与t的函数关系式:。 由此式可知:当t=2s时,Δs最大为6m。即汽车从路口开动后,在追上自行车之前2s两车相距最远,最远距离是
3、6m。 二、三角模型 有关涉及位移、速度、加速度、力等矢量的问题,可运用矢量合成与分解的平行四边形定则建立由表示已知量与未知量的矢量构成的矢量三角形,运用三角形的知识进行求解与分析。 例2 如图1所示,用细绳悬AB吊一质量为m的物体,现在AB中的某点O处再结一细绳用力F拉细绳,使细绳的AO部分偏离竖直方向的夹角为θ后保持不动,则F的最小值是多少? 分析与求解:以O点为研究对象,则它在AO绳的拉力FAO,BO的拉力FBO=mg,拉力F三个力的作用下处于静止状态,因此,这三个力相互平衡。这样,表
4、示这三个力的矢量,首尾相接应该组成一个封闭三角形。由于绳BO对O点的拉力FBO=mg恒定不变,绳AO对O点的拉力方向不变。所以,当F方向变化时,由图1可以看出,当F方向与AO垂直时,F最小,F=mg 三、图像模型 112 图像模型就是,在平面直角坐标系中,建立起有某种关系的物理量间的关系图像,利用图像与坐标轴围成的面积,图像与坐标轴的交点,图像间的交点的物理意义进行分析和求解。这类问题求解时,准确化出图像是关键。 例3 如图2所示,两光滑斜面的总长度相等,高度也相同,两球由静止从顶端滑下,b球
5、在C点之前的加速度大于a球的加速度,在C点之后的加速度小于a球加速度。又因为两斜面长度相等,即两球下滑的路程相等,故两图象下的面积相等。这样,作出速度图像如图所示,由图可看出:tb6、θ+Fsinθ。 欲使物体不上滑,应有:Fcosθmgsinθ+μN。 欲使物体不下滑,应有:Fcosθ+μNmgsinθ。 解以上几式得F的取值范围为:F。 五、一元二次方程模型 一元二次方程模型,就是使题中涉及的已知量和未知量构成一个一元二次方程,利用解根的判别式或韦达定理进行求解或分析。 例5 甲、乙两汽车相距s,甲在前,乙在后,沿着同一条直线同时开始向前运动,甲以速度v0匀速运动,乙由静止开始以加速度a匀加速运动。问什么情况下甲能追上乙?什么情况下甲追不上乙? 分析与求解7、:设从运动开始到甲追上乙的时间为t,则这段时间里甲乙辆车的位移分别为:s甲=,s乙=,这一过程中,两车的位移间应有:s乙+s=s甲,由这三式得:112 ,这是关于t的一元二次方程,解此方程得:,由此可知:(1)当<0即<时方程无解,甲追不上乙。 (2)当=0即时方程有一解,开始后=时刻,甲追上乙,此时两车速度相等。 (3)当>0即>时方程有两解,,开始后时刻甲追上乙,此后甲超过乙,时刻乙又赶上并超过甲。 故,若<,甲不能追上乙.若,甲能追上乙。 例6 竖直上抛的物体,分别在t1秒末和8、t2秒末两次通过空中某一点,求该点离地面圆与切线模型,对原物理问题进行分析求解. 例7 用绝缘细线悬挂一质量为m,带电量为+q的小球,竖直平面内有场强为E、方向不定的匀强电场,且qE
6、θ+Fsinθ。 欲使物体不上滑,应有:Fcosθmgsinθ+μN。 欲使物体不下滑,应有:Fcosθ+μNmgsinθ。 解以上几式得F的取值范围为:F。 五、一元二次方程模型 一元二次方程模型,就是使题中涉及的已知量和未知量构成一个一元二次方程,利用解根的判别式或韦达定理进行求解或分析。 例5 甲、乙两汽车相距s,甲在前,乙在后,沿着同一条直线同时开始向前运动,甲以速度v0匀速运动,乙由静止开始以加速度a匀加速运动。问什么情况下甲能追上乙?什么情况下甲追不上乙? 分析与求解
7、:设从运动开始到甲追上乙的时间为t,则这段时间里甲乙辆车的位移分别为:s甲=,s乙=,这一过程中,两车的位移间应有:s乙+s=s甲,由这三式得:112 ,这是关于t的一元二次方程,解此方程得:,由此可知:(1)当<0即<时方程无解,甲追不上乙。 (2)当=0即时方程有一解,开始后=时刻,甲追上乙,此时两车速度相等。 (3)当>0即>时方程有两解,,开始后时刻甲追上乙,此后甲超过乙,时刻乙又赶上并超过甲。 故,若<,甲不能追上乙.若,甲能追上乙。 例6 竖直上抛的物体,分别在t1秒末和
8、t2秒末两次通过空中某一点,求该点离地面圆与切线模型,对原物理问题进行分析求解. 例7 用绝缘细线悬挂一质量为m,带电量为+q的小球,竖直平面内有场强为E、方向不定的匀强电场,且qE
此文档下载收益归作者所有