旅行商问题的几种求解算法比较

旅行商问题的几种求解算法比较

ID:11875981

大小:121.00 KB

页数:12页

时间:2018-07-14

旅行商问题的几种求解算法比较_第1页
旅行商问题的几种求解算法比较_第2页
旅行商问题的几种求解算法比较_第3页
旅行商问题的几种求解算法比较_第4页
旅行商问题的几种求解算法比较_第5页
资源描述:

《旅行商问题的几种求解算法比较》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、旅行商问题的几种求解算法比较作者:(xxx学校)摘要:TSP问题是组合优化领域的经典问题之一,吸引了许多不同领域的研究工作者,包括数学,运筹学,物理,生物和人工智能等领域,他是目前优化领域里的热点.本文从动态规划法,分支界限法,回溯法分别来实现这个题目,并比较哪种更优越,来探索这个经典的NP(NondeterministicPolynomial)难题.关键词:旅行商问题求解算法比较一.引言旅行商问题(TravellingSalesmanProblem),是计算机算法中的一个经典的难解问题,已归为NP一完备问题类.围绕着这个问题

2、有各种不同的求解方法,已有的算法如动态规划法,分支限界法,回溯法等,这些精确式方法都是指数级(2n)[2,3]的,根本无法解决目前的实际问题,贪心法是近似方法,而启发式算法不能保证得到的解是最优解,甚至是较好的解释.所以我认为很多问题有快速的算法(多项式算法),但是,也有很多问题是无法用算法解决的.事实上,已经证明很多问题不可能在多项式时间内解决出来.但是,有很多很重要的问题他们的解虽然很难求解出来,但是他们的值却是很容易求可以算出来的.这种事实导致了NP完全问题.NP表示非确定的多项式,意思是这个问题的解可以用非确定性的算法

3、"猜"出来.如果我们有一个可以猜想的机器,我们就可以在合理的时间内找到一个比较好的解.NP-完全问题学习的简单与否,取决于问题的难易程度.因为有很多问题,它们的输出极其复杂,比如说人们早就提出的一类被称作NP-难题的问题.这类问题不像NP-完全问题那样时间有限的.因为NP-问题由上述那些特征,所以很容易想到一些简单的算法――把全部的可行解算一遍.但是这种算法太慢了(通常时间复杂度为O(2^n))在很多情况下是不可行的.现在,没有知道有没有那种精确的算法存在.证明存在或者不存在那种精确的算法这个沉重的担子就留给了新的研究者了,或

4、许你就是成功者.本篇论文就是想用几种方法来就一个销售商从几个城市中的某一城市出发,不重复地走完其余N—1个城市,并回到原出发点,在所有可能的路径中求出路径长度最短的一条,比较是否是最优化,哪种结果好.二.求解策略及优化算法动态规划法解TSP问题我们将具有明显的阶段划分和状态转移方程的规划称为动态规划,这种动态规划是在研究多阶段决策问题时推导出来的,具有严格的数学形式,适合用于理论上的分析.在实际应用中,许多问题的阶段划分并不明显,这时如果刻意地划分阶段法反而麻烦.一般来说,只要该问题可以划分成规模更小的子问题,并且原问题的最优

5、解中包含了子问题的最优解(即满足最优子化原理),则可以考虑用动态规划解决.所以动态规划的实质是分治思想和解决冗余,因此,动态规划是一种将问题实例分解为更小的,相似的子问题,并存储子问题的解而避免计算重复的子问题,以解决最优化问题的算法策略.旅行商问题(TSP问题)其实就是一个最优化问题,这类问题会有多种可能的解,每个解都有一个值,而动态规划找出其中最优(最大或最小)值的解.若存在若干个取最优值的解的话,它只取其中的一个.在求解过程中,该方法也是通过求解局部子问题的解达到全局最优解,但与分治法和贪心法不同的是,动态规划允许这些子

6、问题不独立,(亦即各子问题可包含公共的子子问题)也允许其通过自身子问题的解作出选择,该方法对每一个子问题只解一次,并将结果保存起来,避免每次碰到时都要重复计算.关于旅行商的问题,状态变量是gk(i,S),表示从0出发经过k个城市到达i的最短距离,S为包含k个城市的可能集合,动态规划的递推关系为:gk(i,S)=min[gk-1(j,S{j})+dji]j属于S,dji表示j-i的距离.或者我们可以用:f(S,v)表示从v出发,经过S中每个城市一次且一次,最短的路径.f(S,v)=min{f(S-{u},u)+dist(v,u

7、)}uinSf(V,1)即为所求2.分支限界法解TSP问题旅行商问题的解空间是一个排列树,与在子集树中进行最大收益和最小耗费分枝定界搜索类似,使用一个优先队列,队列中的每个元素中都包含到达根的路径.假设我们要寻找的是最小耗费的旅行路径,那可以使用最小耗费分枝定界法.在实现过程中,使用一个最小优先队列来记录活节点,队列中每个节点的类型为MinHeapNode.每个节点包括如下区域:x(从1到n的整数排列,其中x[0]=1),s(一个整数,使得从排列树的根节点到当前节点的路径定义了旅行路径的前缀x[0:s],而剩余待访问的节点是x

8、[s+1:n-1]),cc(旅行路径前缀,即解空间树中从根节点到当前节点的耗费),lcost(该节点子树中任意叶节点中的最小耗费),rcost(从顶点x[s:n-1]出发的所有边的最小耗费之和).当类型为MinHeapNode(T)的数据被转换成为类型T时,其结果即为lcos

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。