最优控制问题求解方法综述

最优控制问题求解方法综述

ID:10163960

大小:28.50 KB

页数:6页

时间:2018-06-12

最优控制问题求解方法综述_第1页
最优控制问题求解方法综述_第2页
最优控制问题求解方法综述_第3页
最优控制问题求解方法综述_第4页
最优控制问题求解方法综述_第5页
资源描述:

《最优控制问题求解方法综述》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、最优控制问题求解方法综述  [摘要]最优控制理论是研究和解决从一切可能的控制方案中寻找最优解的一门学科,解决最优控制问题的主要方法有古典变分法、极小值原理和动态规划。最优控制理论已被应用于综合和设计最速控制系统、最省燃料控制系统、最小能耗控制系统、线性调节器等。同时,这篇综述也阐释了几种常见方法之间的关系。中图分类号:C935文献标识码:A文章编号:1009-914X(2014)36-0043-011、最优控制问题基本介绍6最优控制是使控制系统的性能指标实现最优化的基本条件和综合方法,是现代控制理论的核心之一,是从大量实际问题中提炼出来的。它所研究的问题可以概括为:对一个受控的动

2、力学系统或运动过程,从一类允许的控制方案中找出一个最优的控制方案,使系统的运动在由某个初始状态转移到指定的目标状态的同时,其性能指标最优。最优控制是最优化方法的一个应用。从数学意义上说,最优化方法是一种求极值的方法,即在一组约束为等式或不等式的条件下,使系统的目标函数达到极值,即最大值或最小值。从经济意义上说,是在一定的人力、物力和财力资源条件下,是经济效果达到最大(如产值、利润),或者在完成规定的生产或经济任务下,使投入的人力、物力和财力等资源为最少。控制理论发展到今天,经历了古典控制理论和现代控制理论两个重要发展阶段,现已进入了以大系统理论和智能控制理论为核心的第三个阶段。对

3、于确定性系统的最优控制理论,实际是从20世纪50年代才开始真正发展起来的,它以1956年原苏联数学家庞特里亚金(Pontryagin)提出的极大值原理和1957年贝尔曼提出的动态规划法为标志。时至今日,随着数字技术和电子计算机的快速发展,最优控制的应用已不仅仅局限于高端的航空航天领域,而更加渗入到生产过程、军事行动、经济活动以及人类的其他有目的的活动中,对于国民经济和国防事业起着非常重要的作用。对于静态优化的方法,解决的主要是如何求解函数的极值问题;变分法则被用来求解泛函的极值问题;极小值原理的方法,适用于类似最短时间控制、最少燃料控制的问题。另外,还有线性系统二次型指标的最优控

4、制,即线性二次型问题。与解析法相比,用最优控制理论设计系统有如下的特点:(1)适用于多变量、非线性、时变系统的设计。(2)初始条件可以任意。(3)可以满足多个目标函数的要求,并可用于多个约束的情况。2、最优控制的求解方法62.1变分法变分法是求解泛函极值的一种经典方法,可以确定容许控制为开集的最优控制函数,也是研究最优控制问题的一种重要工具。掌握变分法的基本原理,还有助于理解以最小值原理和动态规划等最优控制理论的思想和内容。但是,变分法作为一种古典的求解最优控制的方法,只有当控制向量u(t)不受任何约束,其容许控制集合充满整个m维控制空间,用古典变分法来处理等式约束条件下的最优控

5、制问题才是行之有效的。在许多实际控制问题中,控制函数的取值常常受到封闭性的边界限制,如方向舵只能在两个极限值范围内转动,电动机的力矩只能在正负的最大值范围内产生等。因此,古典变分法不适于解决许多重要的实际最优控制问题。2.2最小值原理6极小值原理是对经典变分法的扩展,可以解决经典变分法无法解决的最优控制问题。也就是当控制有约束,哈密顿函数H对U不可微时,要用极小值原理。所得出的最优控制必要条件与变分法所得的条件的差别,仅在于用哈密顿函数在最优控制上取值的条件代替,可以看出,后者可以作为前者的特殊情况。其他条件包括正则方程,横截条件,边界条件等都一样。需要注意的是,极小值原理解决最

6、短时间控制问题时,最短时间的控制量只能取约束的边界值+1或-1;而最少燃料控制的控制量可取边界值+1、-1、0。用极小值原理解非线性系统的最优控制将导致非线性两点边值问题,这类问题求解是很困难的。即使系统是线性的,但当指标函数是最短时间、最少燃料这种形式,要求得到最优控制的解析表达式,并构成反馈控制(即把U(t)表示为X(t)的函数)也是非常困难的。2.3动态规划动态规划又称为多级决策理论,是贝尔曼提出的一种非线性规划方法。它将一个多级决策问题化为一系列单极决策问题,从最后一级状态开始到初始状态为止,逆向递推求解最优决策。动态规划法原理简明,适用于计算机求解,在许多理论问题的研究

7、中,都应用到动态规划的思路。6动态规划是求解最优化问题的重要方法,在应用动态规划时,有一个前提条件是系统的状态变量必须满足“无后效性”。所谓无后效性的概念是:在任一时刻,系统状态为x(),以后的状态仅决定于x()以及x()到达终点时刻的状态x()的控制策略,而与以前的状态和以前的控制策略无关。因此,在应用动态规划方法时,要注意状态变量的选取,使之满足“无后效性”的条件。例如,讨论物体在空间运动时,不仅选用物体的空间位置座位状态变量,而且要将速度变量也包括在状态变量之内,以便满足“

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。