资源描述:
《最新向量公式大全01332.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、__________________________________________________向量公式设a=(x,y),b=(x',y')。1、向量的加法向量的加法满足平行四边形法则和三角形法则。AB+BC=AC。a+b=(x+x',y+y')。a+0=0+a=a。向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。2、向量的减法如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0.0的反向量为0AB-AC=CB.即“共同起点,指向被减”a=(x,y)b=(x',y')则a-b=(x-x',y-y').4、数乘向
2、量实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣•∣a∣。当λ>0时,λa与a同方向;当λ<0时,λa与a反方向;当λ=0时,λa=0,方向任意。当a=0时,对于任意实数λ,都有λa=0。注:按定义知,如果λa=0,那么λ=0或a=0。实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。数与向量的乘法满足下面的运算律结合律:
3、(λa)•b=λ(a•b)=(a•λb)。向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.数乘向量的消去律:①如果实数λ≠0且λa=λb,那么a=b。②如果a≠0且λa=μa,那么λ=μ。3、向量的的数量积收集于网络,如有侵权请联系管理员删除__________________________________________________定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π定义:两个向量的数量积(
4、内积、点积)是一个数量,记作a•b。若a、b不共线,则a•b=
5、a
6、•
7、b
8、•cos〈a,b〉;若a、b共线,则a•b=+-∣a∣∣b∣。向量的数量积的坐标表示:a•b=x•x'+y•y'。向量的数量积的运算律a•b=b•a(交换律);(λa)•b=λ(a•b)(关于数乘法的结合律);(a+b)•c=a•c+b•c(分配律);向量的数量积的性质a•a=
9、a
10、的平方。a⊥b〈=〉a•b=0。
11、a•b
12、≤
13、a
14、•
15、b
16、。向量的数量积与实数运算的主要不同点1、向量的数量积不满足结合律,即:(a•b)•c≠a•(b•c);例如:(a•b)^2≠a^2•b^2。2、向
17、量的数量积不满足消去律,即:由a•b=a•c(a≠0),推不出b=c。3、
18、a•b
19、≠
20、a
21、•
22、b
23、4、由
24、a
25、=
26、b
27、,推不出a=b或a=-b。4、向量的向量积定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b。若a、b不共线,则a×b的模是:∣a×b∣=
28、a
29、•
30、b
31、•sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系。若a、b共线,则a×b=0。向量的向量积性质:∣a×b∣是以a和b为边的平行四边形面积。a×a=0。a‖b〈=〉a×b=0。向量的向量积运算律a×b=-b×a;(λa)×b=λ(a×b)=a
32、×(λb);(a+b)×c=a×c+b×c.注:向量没有除法,“向量AB/向量CD”是没有意义的。向量的三角形不等式1、∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣;①当且仅当a、b反向时,左边取等号;②当且仅当a、b同向时,右边取等号。2、∣∣a∣-∣b∣∣≤∣a-b∣≤∣a∣+∣b∣。①当且仅当a、b同向时,左边取等号;②当且仅当a、b反向时,右边取等号。收集于网络,如有侵权请联系管理员删除__________________________________________________定比分点定比分点公式(向量P1P=λ•向量PP2)设P1、P2是
33、直线上的两点,P是l上不同于P1、P2的任意一点。则存在一个实数λ,使向量P1P=λ•向量PP2,λ叫做点P分有向线段P1P2所成的比。若P1(x1,y1),P2(x2,y2),P(x,y),则有OP=(OP1+λOP2)(1+λ);(定比分点向量公式)x=(x1+λx2)/(1+λ),y=(y1+λy2)/(1+λ)。(定比分点坐标公式)我们把上面的式子叫做有向线段P1P2的定比分点公式三点共线定理若OC=λOA+μOB,且λ+μ=1,则A、B、C三点共线三角形重心判断式在△ABC中,若GA+GB+GC=O,则G为△ABC的重心[编辑本段]向量共线的重要条
34、件若b≠0,则a//b的重要条件是存在唯一实数λ,使