欢迎来到天天文库
浏览记录
ID:57729954
大小:23.50 KB
页数:2页
时间:2020-09-02
《十倍交叉验证.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、交叉验证(Cross Validation,CV)是用来验证分类器的性能一种统计分析方法,基本思想是在某种意义下将原始数据(dataset)进行分组,一部分做为训练集(train set),另一部分做为验证集(validation set),首先用训练集对分类器进行训练,在利用验证集来测试训练得到的模型(model),以此来做为评价分类器的性能指标。常见CV的方法如下:1)Hold-Out Method将原始数据随机分为两组,一组做为训练集,一组做为验证集,利用训练集训练分类器,然后利用验证集验证模型,记录
2、最后的分类准确率为此Hold-OutMethod下分类器的性能指标。此种方法的好处的处理简单,只需随机把原始数据分为两组即可,其实严格意义Hold-Out Method并不能算是CV,因为这种方法没有达到交叉的思想,由于是随机的将原始数据分组,所以最后验证集分类准确率的高低与原始数据的分组有很大的关系,所以这种方法得到的结果其实并不具有说服性。2)K-fold Cross Validation(记为K-CV)将原始数据分成K组(一般是均分),将每个子集数据分别做一次验证集,其余的K-1组子集数据作为训练集,
3、这样会得到K个模型,用这K个模型最终的验证集的分类准确率的平均数作为此K-CV下分类器的性能指标。K一般大于等于2,实际操作时一般从3开始取,只有在原始数据集合数据量小的时候才会尝试取2。K-CV可以有效的避免过学习以及欠学习状态的发生,最后得到的结果也比较具有说服性。如: 10-foldcross-validation就是十折交叉验证,用来测试精度。是常用的精度测试方法.将数据集分成十分,轮流将其中9份做训练1份做测试,10次的结果的均值作为对算法精度的估计,一般还需要进行多次10倍交叉验证求均值,例如1
4、0次10倍交叉验证,更精确一点。3)Leave-One-Out Cross Validation(记为LOO-CV)如果设原始数据有N个样本,那么LOO-CV就是N-CV,即每个样本单独作为验证集,其余的N-1个样本作为训练集,所以LOO-CV会得到N个模型,用这N个模型最终的验证集的分类准确率的平均数作为此下LOO-CV分类器的性能指标。相比于前面的K-CV,LOO-CV有两个明显的优点:① 每一回合中几乎所有的样本皆用于训练模型,因此最接近原始样本的分布,这样评估所得的结果比较可靠。② 实验过程中没有随
5、机因素会影响实验数据,确保实验过程是可以被复制的。但LOO-CV的缺点则是计算成本高,因为需要建立的模型数量与原始数据样本数量相同,当原始数据样本数量相当多时,LOO-CV在实作上便有困难几乎就是不显示,除非每次训练分类器得到模型的速度很快,或是可以用并行化计算减少计算所需的时间。
此文档下载收益归作者所有