教师用习题解答第6章-大学物理答案.doc

教师用习题解答第6章-大学物理答案.doc

ID:57420770

大小:591.00 KB

页数:10页

时间:2020-08-16

教师用习题解答第6章-大学物理答案.doc_第1页
教师用习题解答第6章-大学物理答案.doc_第2页
教师用习题解答第6章-大学物理答案.doc_第3页
教师用习题解答第6章-大学物理答案.doc_第4页
教师用习题解答第6章-大学物理答案.doc_第5页
资源描述:

《教师用习题解答第6章-大学物理答案.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、思考题6.1与两公式有何区别和联系?公式中的q0有何要求?答:前式为电场(静电场、运动电荷的电场)电场强度的定义式,后一式仅是静止点电荷产生的电场分布。静电场中前式是后一式的矢量叠加,即空间一点的场强是所有点电荷在此点产生的场强之和。公式中的q0必须足够小,以保证q0放入电场中后在实验精度内对原电场的电荷分布不产生可觉察的影响;它的几何线度必须足够小,以保证它在空间电场中的位置有确切的意义。6.2电力线、电通量和电场强度的关系如何?电通量的正负表示什么意义?答:电力线为描述电场中场强分布的有向曲线

2、。电力线上各点的切线方向与该点的场强方向相同,曲线的疏密代表该点场强的大小,也就是说电场中某点场强的大小等于穿过该点附近垂直于电场方向单位面积所通过的电力线条数。如果电场空间有一面元,通过此面元的电力线条数就是通过这面元的电通量,它和电场强度的关系为,所以穿过电场中任意面积S上的电通量为。对于非闭合曲面,电通量的正负仅代表曲面各处法线的方向与该处场强方向的夹角为锐角还是钝角;对闭合曲面,规定自内向外的方向为各处面元的法向的正方向,所以电通量为正表示电力线从内部穿出的条数多于从外部穿入的条数,为负则

3、反之。6.3如果通过闭合面S的电通量Fe为零,能否肯定面S上每一点的场强都等于零?答:不能。通过闭合面S的电通量Fe为零,,只是说明穿入、穿出闭合面S的电力线条数一样多,不能讲闭合面各处没有电力线的穿入、穿出。只要有穿入、穿出,面上该处的场强就不为零,所以不能肯定面S上每一点的场强都等于零。6.4四个相等的点电荷放在正方形的四个顶点上,问是否可以以四边形中心为球心作一个球面,利用高斯定理求出它们所产生的场强?对此球面高斯定理是否成立?答:由于此四个点电荷产生的电场不具有球对称性,在以四边形中心为球

4、心作的高斯球面上,各点的场强无论其大小还是与球面面元的夹角都不是常数,因此不能对上述球面利用高斯定理求出它们所产生的场强。但高斯定理适用于一切静电场,故对此球面高斯定理仍然成立。6.5某同学根据高斯定理得出以下结论:(1)闭合曲面内的电荷代数和为零,则闭合面上任一点的电场强度必为零;(2)闭合面上各点的电场强度为零,则闭合曲面内的一定没有电荷;(3)闭合面上各点的电场强度仅由曲面内的电荷决定;(4)通过闭合面的电通量仅由曲面内的电荷决定。上述结论是否正确?并分别加以说明。答:1.2.3不正确。4正

5、确。(1)闭合面上各点的电场强度由面内和面外电荷共同决定。(2)当闭合面内正负电荷的代数和为零时,闭合面上各点的电场强度也为零。(3)闭合面上各点的电场强度由曲面内外的电荷共同决定。(4)通过闭合面的电通量仅由曲面内的电荷决定。6.6对于一个绝缘导体屏蔽空腔内部的电场和电势描述正误加以判断:(1)场强不受腔外电荷的影响,但电势要受腔外电荷的影响;(2)电势不受腔外电荷的影响,但场强要受腔外电荷的影响;(3)场强和电势都不受腔外电荷的影响;(4)场强和电势都受腔外电荷的影响。答:1正确。2.3.4不

6、正确。静电平衡时,空腔内的场强分布由空腔内带电体及空腔内表面电荷的分布唯一确定,与空腔外带电与否等都无关;导体内部与导体表面的电势相等,导体是个等势体。习题6.1已知电荷线密度分别为+l1和-l2的两条均匀带电的平行长直导线,相距为d,计算每条导线上单位长度所受的静电力大小是多少。解:建立如图所示坐标系,以一条导线所在位置为坐标原点,过另一导线并与导线垂直的方向为x轴的正向。(1)点p在导线构成的平面上,E+、E-分别表示正负带电导线在p点的电场强度,则有:(2)设F+、F-分别表示政府带电导线单

7、位长度所受的电场力,则有:显然有F+=-F,相互作用力大小相等,方向相反,两导线相互吸引。图6-35 习题6.2用图6.2宽度为b的无限长均匀带电平面,面电荷密度,与带电平面共面的一点P到平面相邻边的垂直距离为a(P点在带电平面外),求:P点的电场强度。图2解:平行于平面的侧边将带电平面分成无数小窄条,如图2所示其中任意一条宽dx,在P点产生场强相当于无限长带电直方向:x轴正方向6.3如图,均匀带电球壳,壳内外半径分别为R1,R2,带电量Q,求:(1)空间各点的场强分布;(2)当R1®0时,空间各

8、点的场强分布;(3)当R1®R2时,空间各点的场强分布。图6-36 习题6.3用图解:(1)由对称性分析可知,场强方向沿径向,且离球心距离相等的点其场强大小相等。作半径为r的同心球面为高斯面,由高斯定理::::(2)当R1®0时::的区间:此为均匀带电球体的电场。(3)当R1®R2时,此为均匀带电球面的电场。图6-37 习题6.4用图6.4半径为R的带电球体,其电荷体密度为,K为正常数,r为球心到球内任意点的矢径大小。求:(1)球内外的场强分布;(2)球内外的电势分布。解:由于电荷

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。