欢迎来到天天文库
浏览记录
ID:51873063
大小:270.50 KB
页数:12页
时间:2020-03-17
《2015年全国中考数学试卷解析分类汇编(第三期)专题22 等腰三角形.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、等腰三角形一、选择题1.(2015,广西玉林,6,3分)如图,在△ABC中,AB=AC,DE∥BC,则下列结论中不正确的是( ) A.AD=AEB.DB=ECC.∠ADE=∠CD.DE=BC考点:等腰三角形的判定与性质;平行线的性质.专题:计算题.分析:由DE与BC平行,得到三角形ADE与三角形ABC相似,由相似得比例,根据AB=AC,得到AD=AE,进而确定出DB=EC,再由两直线平行同位角相等,以及等腰三角形的底角相等,等量代换得到∠ADE=∠C,而DE不一定为中位线,即DE不一定为BC的一半,即可得到正确选项.解答:解:∵DE∥BC,∴=,∠ADE=∠B,∵A
2、B=AC,∴AD=AE,DB=EC,∠B=∠C,∴∠ADE=∠C,而DE不一定等于BC,故选D.点评:此题考查了等腰三角形的判定与性质,以及平行线的性质,熟练掌握等腰三角形的判定与性质是解本题的关键.2.(2015•丹东,第6题3分)如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D的度数为( ) A.15°B.17.5°C.20°D.22.5°考点:等腰三角形的性质.分析:先根据角平分线的定义得到∠1=∠2,∠3=∠4,再根据三角形外角性质得∠1+∠2=∠3+∠4+∠A,∠1=∠3+∠D,则2∠1=2∠
3、3+∠A,利用等式的性质得到∠D=∠A,然后把∠A的度数代入计算即可.解答:解:∵∠ABC的平分线与∠ACE的平分线交于点D,∴∠1=∠2,∠3=∠4,∵∠ACE=∠A+∠ABC,即∠1+∠2=∠3+∠4+∠A,∴2∠1=2∠3+∠A,∵∠1=∠3+∠D,∴∠D=∠A=×30°=15°.故选A.点评:本题考查了三角形内角和定理,关键是根据三角形内角和是180°和三角形外角性质进行分析.二、填空题1.(2015,广西玉林,17,3分)如图,等腰直角△ABC中,AC=BC,∠ACB=90°,点O分斜边AB为BO:OA=1:,将△BOC绕C点顺时针方向旋转到△AQC的位置,
4、则∠AQC= 105° .考点:旋转的性质;等腰直角三角形.专题:计算题.分析:连接OQ,由旋转的性质可知:△AQC≌△BOC,从而推出∠OAQ=90°,∠OCQ=90°,再根据特殊直角三角形边的关系,分别求出∠AQO与∠OQC的值,可求出结果.解答:解:连接OQ,∵AC=BC,∠ACB=90°,∴∠BAC=∠A=45°,由旋转的性质可知:△AQC≌△BOC,∴AQ=BO,CQ=CO,∠QAC=∠B=45°,∠ACQ=∠BCO,∴∠OAQ=∠BAC+∠CAQ=90°,∠OCQ=∠OCA+∠ACQ=∠OCA+∠BCO=90°,∴∠OQC=45°,∵BO:OA=1:,设B
5、O=1,OA=,∴AQ=,∴∠AQO=60°,∴∠AGC=105°.点评:本题主要考查了图形旋转的性质,特殊角直角三角形的边角关系,掌握图形旋转的性质,熟记特殊直角三角形的边角关系是解决问题的关键.2.(2015•梧州,第17题3分)如图,在△ABC中,∠A=70°,AC=BC,以点B为旋转中心把△ABC按顺时针旋转α度,得到△A′B′C,点A恰好落在AC上,连接CC′,则∠ACC′= 110° .考点:旋转的性质.所有分析:由∠A=70°,AC=BC,可知∠ACB=40°,根据旋转的性质,AB=BA′,BC=BC′,∠CBC′=∠α=40°,∠BCC′=70°,于是
6、∠ACC′=∠ACB+∠BCC′=110°.解答:解:∵∠A=70°,AC=BC,∴∠BCA=40°,根据旋转的性质,AB=BA′,BC=BC′,∴∠α=180°﹣2×70°=40°,∵∠∠CBC′=∠α=40°,∴∠BCC′=70°,∴∠ACC′=∠ACB+∠BCC′=110°;故答案为:110°.点评:本题主要考查了旋转的性质、等腰三角形的性质,熟练掌握旋转前后的图形对应边相等、旋转角相等是解决问题的关键.3.(2015•河北,第20题3分)如图,∠BOC=9°,点A在OB上,且OA=1,按下列要求画图:以A为圆心,1为半径向右画弧交OC于点A1,得第1条线段AA
7、1;再以A1为圆心,1为半径向右画弧交OB于点A2,得第2条线段A1A2;再以A2为圆心,1为半径向右画弧交OC于点A3,得第3条线段A2A3;…这样画下去,直到得第n条线段,之后就不能再画出符合要求的线段了,则n= 9 .考点:等腰三角形的性质.分析:根据等腰三角形的性质和三角形外角的性质依次可得∠A1AB的度数,∠A2A1C的度数,∠A3A2B的度数,∠A4A3C的度数,…,依此得到规律,再根据三角形外角小于90°即可求解.解答:解:由题意可知:AO=A1A,A1A=A2A1,…,则∠AOA1=∠OA1A,∠A1OA2=∠A1A2A,…,∵∠BO
此文档下载收益归作者所有