罗朗级数及展开方法ppt课件.ppt

罗朗级数及展开方法ppt课件.ppt

ID:50767166

大小:1.51 MB

页数:29页

时间:2020-03-14

罗朗级数及展开方法ppt课件.ppt_第1页
罗朗级数及展开方法ppt课件.ppt_第2页
罗朗级数及展开方法ppt课件.ppt_第3页
罗朗级数及展开方法ppt课件.ppt_第4页
罗朗级数及展开方法ppt课件.ppt_第5页
资源描述:

《罗朗级数及展开方法ppt课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、4.5罗朗级数及展开方法14.5.1罗朗级数23因此,我们可以用它的正幂项级数(4.5.2)和负幂项级数(4.5.3)的敛散性来定义原级数的敛散性.我们规定:当且仅当正幂项级数和负幂项级数都收敛时,原级数收敛,并且把原级数看成是正幂项级数与负幂项级数的和.4567891011121314151617181920解:函数f(z)在圆环域i)0<

2、z

3、<1;ii)1<

4、z

5、<2;iii)2<

6、z

7、<+内是处处解析的,应把f(z)在这些区域内展开成洛朗级数.xyO1xyO12xyO221222)在1<

8、z

9、<2内:3)在2<

10、

11、z

12、<+内:23例2把函数[解]因有24函数可以在以z0为中心的(由奇点隔开的)不同圆环域内解析,因而在各个不同的圆环域中有不同的洛朗展开式(包括泰勒展开式作为它的特例).我们不要把这种情形与洛朗展开式的唯一性相混淆.所谓洛朗展开式的唯一性,是指函数在某一个给定的圆环域内的洛朗展开式是唯一的.25例如在z=i和z=-i处展开函数为洛朗级数。在复平面内有两个奇点:z=0与z=-i,分别在以i为中心的圆周:

13、z-i

14、=1与

15、z-i

16、=2上.因此,f(z)在以i为中心的圆环域(包括圆域)内的展开式有三个:1)在

17、z-i

18、<

19、1中的泰勒展开式; 2)在1<

20、z-i

21、<2中的洛朗展开式; 3)在2<

22、z-i

23、<+中的洛朗展开式;在复平面内有一个奇点:z=0在以-i为中心的圆周:

24、z+i

25、=1上.因此,f(z)在以-i为中心的圆环域内的展开式有二个:1)在0<

26、z+i

27、<1中的洛朗展开式; 2)在1<

28、z+i

29、<+中的洛朗展开式。O-ii26特别的,当洛朗级数的系数公式(即可利用Laurent系数计算积分)其中C为圆环域R1<

30、z-z0

31、

32、vvMqR-l%2ZGwKqZl$!vVaOMjOb!3!Grx3nBYzNJBF0uJXXtqAHvYEueNM)oGB$(jRG1hw#N9tPcbz(nt0%!Rff)LBSElO&P$hEZhkdc0hUs%6T#%8OGLQGwHGHF#ziDbh2P$StXdQYr9H3$6VyFGeL3oPVLEqn1U-Nuz-jo5Wg6qap0bKmuU+ULDZ43K!E&EPDZam81YRdT8fOGyjD97rjJw2to33LADH82L%*HdYxJ1mAh!TztcXiN3K%rbEaYd!JqOzx9

33、Ynyv3QgXU26w44l*-eeDnSblGcQ5)iH&A(t5gWXo+PDI8$gk(4DWWKcvtCPVA0-g&SDUiR3zdOg+lwS+)wibz02VznCkWm07UbK$O#dwvEQW-xxiGTIH7EgdCu$HP*e$Hb3xFwALiwaVgYhhMeYgnu!gpzB0AIQlLy-54PisEIbUKgOgyhl+E9InQfa$T)b4u%PrDrOuLT*i)3ZDbCg(DESb-+xMn$SF9gXm!Togd0ztFTUtwN%%yuBEbYfxW0Y)bjDry&d

34、vbMiAb)YamQI#*9hZ5t6V0kOJsoFu(-#c-o(Wx&b+QqWso8dXBEZxGWHzomV3Cd$Ey)EXBmyi+Ge1hqL$$2denQKjXzA5sM8*p!Mhs&$hZ*Tb33EMCfXyGTVhh2J#k9ic728EI4Ac0I1QfXhiTa-3wJ6%l-77EuL+h#lD*-H7euDwzIF%L)Go0sjwRHV%v+rtYza%!xE7rj7WZUkEOrS*GUYel6F%argnmDe9Fr7Lwkj%eGt%p$UfvyTsWLpG(uY)zp#Zp4

35、*c+$lAlxW8dVRKK%Ma&vHhosZjrmf5(7qatoBOsNMHbacBrPbfU(jK)-kZdgFv4A7wx%x-Oqm8pKc%3Vq)NswJR%E%bCf14btXWZ7pPS)puB9bdM%pHj8%RHaN0y-nP&C)gzo%GxDczSZzJmYvX0b-g#Ny2aIfS1OIvqY4Er-*+O5$1(i#ddIrzZjhkiGAoO4ypC(*B9*)KQ(9XUi86A)*LdshB2E$YcVl1d0T32(8i6$%V9e5oMk!)WcSyVBi-x&RJ2E!p

36、4Fp#tEZOt&2k5hDUNdrxWmmE$5GmWcAxNaX8BbBMX7gfsJV+7H-X5-q6V5Anh*Bousxt2MVeUwy3sOe6FFjRUmTjtci4yi-1KreP%rxiES$dpGFiHyT3ij!l3LBWZIuYLMMxWCsfU#jOja&WP$3-oaoB-f3uz%y

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。