高二数学必修2立体几何二面角专项训练复习.doc

高二数学必修2立体几何二面角专项训练复习.doc

ID:50645932

大小:194.50 KB

页数:7页

时间:2020-03-13

高二数学必修2立体几何二面角专项训练复习.doc_第1页
高二数学必修2立体几何二面角专项训练复习.doc_第2页
高二数学必修2立体几何二面角专项训练复习.doc_第3页
高二数学必修2立体几何二面角专项训练复习.doc_第4页
高二数学必修2立体几何二面角专项训练复习.doc_第5页
资源描述:

《高二数学必修2立体几何二面角专项训练复习.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、高二数学必修2二面角专项训练班级_____________姓名_____________一、定义法:直接在二面角的棱上取一点,分别在两个半平面内作棱的垂线,得出平面角.例1在四棱锥P-ABCD中,ABCD是正方形,PA⊥平面ABCD,PA=AB=a,求二面角B-PC-D的大小。          二、垂线法:已知二面角其中一个面内一点到一个面的垂线,用三垂线定理或逆定理作出二面角的平面角;例2在四棱锥P-ABCD中,ABCD是平行四边形,PA⊥平面ABCD,PA=AB=a,∠ABC=30°,求二面角P-BC-A的正切。      三、垂面法:作棱的垂直平面,则这个垂面与二面角

2、两个面的交线所夹的角就是二面角的平面角例3在四棱锥P-ABCD中,ABCD是正方形,PA⊥平面ABCD,PA=AB=a,求B-PC-D的大小。四、投影面积法:一个平面a上的图形面积为S,它在另一个平面b上的投影面积为S',这两个平面的夹角为q,则S'=Scosq或cosq=.例4在四棱锥P-ABCD中,ABCD为正方形,PA⊥平面ABCD,PA=AB=a,求平面PBA与平面PDC所成二面角的大小。 五、补形法:对于一类没有给出棱的二面角,应先延伸两个半平面,使之相交出现棱,然后再选用上述方法(尤其要考虑射影法)。例5、在四棱锥P-ABCD中,ABCD为正方形,PA⊥平面ABC

3、D,PA=AB=a,求平面PBA与平面PDC所成二面角的大小。方法归纳:二面角的类型和求法可用框图展现如下:[基础练习]1.二面角是指()A两个平面相交所组成的图形B一个平面绕这个平面内一条直线旋转所组成的图形C从一个平面内的一条直线出发的一个半平面与这个平面所组成的图形D从一条直线出发的两个半平面所组成的图形2.平面α与平面β、γ都相交,则这三个平面可能有()A1条或2条交线B2条或3条交线C仅2条交线D1条或2条或3条交线3.在300的二面角的一个面内有一个点,若它到另一个面的距离是10,则它到棱的距离是()A5B20CD4.在直二面角α-l-β中,RtΔABC在平面α内

4、,斜边BC在棱l上,若AB与面β所成的角为600,则AC与平面β所成的角为()A300B450C600D1200ABCD5.如图,射线BD、BA、BC两两互相垂直,AB=BC=1,BD=,则弧度数为的二面角是()AD-AC-BBA-CD-BCA-BC-DDA-BD-C6.△ABC在平面α的射影是△A1B1C1,如果△ABC所在平面和平面α成θ,则有()ABMNPlAS△A1B1C1=S△ABC·sinθBS△A1B1C1=S△ABC·cosθCS△ABC=S△A1B1C1·sinθDS△ABC=S△A1B1C1·cosθ7.如图,若P为二面角M-l-N的面N内一点,PB⊥l,

5、B为垂足,A为l上一点,且∠PAB=α,PA与平面M所成角为β,二面角M-l-N的大小为γ,则有()A.sinα=sinβsinγ B.sinβ=sinαsinγ C.sinγ=sinαsinβ D以上都不对8.在600的二面角的棱上有两点A、B,AC、BD分别是在这个二面角的两个面内垂直于AB的线段,已知:AB=6,AC=3,BD=4,则CD=。9.已知△ABC和平面α,∠A=300,∠B=600,AB=2,ABα,且平面ABC与α所成角为300,则点C到平面α的距离为。10.正方体ABCD—A1B1C1D1中,平面AA1C1C和平面A1BCD1所成的二面角(锐角)为。11

6、.已知菱形的一个内角是600,边长为a,沿菱形较短的对角线折成大小为600的二面角,则菱形中含600角的两个顶点间的距离为。12.如图,△ABC在平面α内的射影为△ABC1,若∠ABC1=θ,BC1=a,且αABC1C平面ABC与平面α所成的角为φ,求点C到平面α的距离CDPMBA13.ΔABC中,∠A=90°,AB=4,AC=3,平面ABC外一点P在平面ABC内的射影是AB中点M,二面角P—AC—B的大小为45°。求(1)二面角P—BC—A的大小;(2)二面角C—PB—A的大小14.在二面角α-AB-β的一个平面α内,有一直线AC,它与棱AB成450角,AC与平面β成30

7、0角,求二面角α-AB-β的度数。15.若二面角内一点到二面角的两个面的距离分别为a和,到棱的距离为2a,则此二面角的度数是。16.把等腰直角三角形ABC沿斜边BC上的高AD折成一个二面角,若∠BAC=600,则此二面角的度数是。AFEBDC17.如图,已知正方形ABCD和正方形ABEF所在平面成600的二面角,求直线BD与平面ABEF所成角的正弦值。ABCDA1D1C1B118.如图,在棱长为a的正方体ABCD—A1B1C1D1中,求:(1)面A1ABB1与面ABCD所成角的大小;(2)二面角C1—B

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。