古典概型(陈静).ppt

古典概型(陈静).ppt

ID:50089117

大小:754.50 KB

页数:22页

时间:2020-03-08

古典概型(陈静).ppt_第1页
古典概型(陈静).ppt_第2页
古典概型(陈静).ppt_第3页
古典概型(陈静).ppt_第4页
古典概型(陈静).ppt_第5页
资源描述:

《古典概型(陈静).ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、复习引入1.两个事件之间的关系包括包含事件、相等事件、互斥事件、对立事件,事件之间的运算包括和事件、积事件,这些概念的含义分别如何?若事件A发生时事件B一定发生,则.若事件A发生时事件B一定发生,反之亦然,则A=B.若事件A与事件B不同时发生,则A与B互斥.若事件A与事件B有且只有一个发生,则A与B相互对立.2.概率的加法公式是什么?对立事件的概率有什么关系?若事件A与事件B互斥,则P(A+B)=P(A)+P(B).若事件A与事件B相互对立,则P(A)+P(B)=1.3.通过试验和观察的方法,可以得到

2、一些事件的概率估计,但这种方法耗时多,操作不方便,并且有些事件是难以组织试验的.因此,我们希望在某些特殊条件下,有一个计算事件概率的通用方法.§3.2.1古典概型例1:抛掷两枚质地均匀的硬币,有哪几种可能结果?连续抛掷三枚质地均匀的硬币,有哪几种可能结果?(正,正),(正,反),(反,正),(反,反);(正,正,正),(正,正,反),(正,反,正),(反,正,正),(正,反,反),(反,正,反),(反,反,正),(反,反,反).知识探究(一):基本事件上述试验中的每一个结果都是随机事件,我们把这类事件

3、称为基本事件.互斥关系(定义)基本事件:在一次试验中可能出现的每一个基本结果称为基本事件。在一次试验中,任何两个基本事件是什么关系?思考:在连续抛掷三枚质地均匀的硬币的试验中,随机事件“出现两次正面和一次反面”,“至少出现两次正面”分别由哪些基本事件组成?(正,正,正),(正,正,反),(正,反,正),(反,正,正),(正,反,反),(反,正,反),(反,反,正),(反,反,反).思考:综上分析,基本事件有哪两个特征?(1)任何两个基本事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的

4、和.练习:从字母a,b,c,d中任意取出两个不同字母的试验中,有哪些基本事件?事件“取到字母a”是哪些基本事件的和?A={a,b},B={a,c},C={a,d},D={b,c},E={b,d},F={c,d};A+B+C.知识探究(二):古典概型思考1:抛掷一枚质地均匀的骰子有哪些基本事件?每个基本事件出现的可能性相等吗?思考2:抛掷一枚质地不均匀的硬币有哪些基本事件?每个基本事件出现的可能性相等吗?1、有限性:一次试验中只有有限个基本事件2、等可能性:每个基本事件发生的可能性是相等的具有以上两个特

5、征的试验称为古典概型。定义:判断下列试验是不是古典概型1、种下一粒种子观察它是否发芽。2、上体育课时某人练习投篮是否投中。3、从所有整数中任取一个数。4、在圆面内任意取一点。5、射击一次命中的环数。题后小结:判断一个试验是否为古典概型,在于检验这个试验是否同时具有有限性和等可能性,缺一不可。NNNNN思考3:随机抛掷一枚质地均匀的骰子是古典概型吗?每个基本事件出现的概率是多少?你能根据古典概型和基本事件的概念,检验你的结论的正确性吗?P(“1点”)=P(“2点”)=P(“3点”)=P(“4点”)=P(

6、“5点”)=P(“6点”)P(“1点”)+P(“2点”)+P(“3点”)+P(“4点”)+P(“5点”)+P(“6点”)=1.思考4:一般地,如果一个古典概型共有n个基本事件,那么每个基本事件在一次试验中发生的概率为多少?思考5:考察抛掷一枚质地均匀的骰子的基本事件总数,与“出现偶数点”、“出现不小于2点”所包含的基本事件的个数之间的关系,你有什么发现?P(“出现偶数点”)=“出现偶数点”所包含的基本事件的个数÷基本事件的总数;P(“出现不小于2点”)=“出现不小于2点”所包含的基本事件的个数÷基本事

7、件的总数.一般地,对于古典概型,事件A在一次试验中发生的概率如何计算?思考6:从集合的观点分析,如果在一次试验中,等可能出现的所有n个基本事件组成全集U,事件A包含的m个基本事件组成子集A,那么事件A发生的概率P(A)等于什么?特别地,当A=U或A=Ф时,P(A)等于什么?P(A)=事件A所包含的基本事件的个数基本事件的总数.题后小结:求古典概型概率的步骤:(1)判断试验是否为古典概型;(2)列举出试验所有基本事件,求n(3)写出事件A,列举出事件A包含的基本事件,求m(4)代入公式求概率P(A)=m

8、n理论迁移例1单选题是标准化考试中常用的题型,一般是从A,B,C,D四个选项中选择一个正确答案.如果考生掌握了考查的内容,他可以选择唯一正确的答案,假设考生不会做,他随机地选择一个答案,问他答对的概率是多少?0.25例2同时掷两个骰子,计算:(1)一共有多少种不同的结果?(2)其中向上的点数之和是7的结果有多少种?(3)向上的点数之和是5的概率是多少?(6,6)(6,5)(6,4)(6,3)(6,2)(6,1)(5,6)(5,5)(5,4)(5,3)(5

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。