欢迎来到天天文库
浏览记录
ID:47057719
大小:1.36 MB
页数:11页
时间:2019-07-11
《奥数第4讲巧求周长与面积》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、标准文档第四讲巧求周长与面积教学目标1.掌握巧求周长与面积的基本方法;2.理解并掌握割补、平移等数学思想方法。经典精讲巧求周长【例1】(年“希望杯”第一试)右图中的阴影部分是正方形,线段长厘米,线段长厘米,则长方形的周长是__________厘米。【分析】由于图中阴影部分是个正方形,其四条边的边长都相等,且等于长方形的宽。的和应为长方形的长加上正方形的边长,所以等于长方形的长与宽之和。所以长方形的周长为:厘米。【例2】如右图所示,在一个正方形内画中、小两个正方形,使三个正方形具有公共顶点,这样大正方形被分割成了正方形区域甲,和形区域乙和丙。甲的边长为厘米,乙的边长是甲的边长的
2、倍,丙的边长是乙的边长的倍,那么丙的周长为多少厘米?长多少厘米?【分析】乙的周长实际上是正方形的周长(我们可将乙与甲重合的两条线段分别向左、向下平移),同样的,丙的周长也就是正方形的周长。由于,,所以丙的周长为厘米,(厘米)。实用文案标准文档【例3】用若干个边长都是厘米的平行四边形与三角形(如右图)拼接成一个大的平行四边形,已知大平行四边形的周长是厘米,那么平行四边形和三角形各有多少个?【分析】大平行四边形上、下两边的长为厘米,观察上边,每厘米有两个平行四边形的边,所以共有小平行四边形个,三角形的数量与小平行四边形的数量相等,也是个。[拓展]用若干个边长都是厘米的平行四边形与
3、三角形(如右图)拼接成一个大的平行四边形,已知大平行四边形的周长是厘米,那么平行四边形和三角形各有多少个?[分析]大平行四边形上、下两边的长为厘米,观察上边,每厘米有两个平行四边形的边,,所以有三角形个,小平行四边形个。【例4】有个小长方形,它们的长和宽分别相等,用这个小长方形拼成的大长方形(如图)的面积是平方厘米,求这个大长方形的周长。【分析】从图上可以知道,小长方形的长的倍等于宽的倍,所以长是宽的倍。每个小长方形的面积为平方厘米,所以宽宽,所以宽为厘米,长为厘米。大长方形的周长为厘米。[拓展]右图的长方形被分割成个正方形,已知原长方形的面积为平方厘米,求原长方形的长与宽。
4、[分析]大正方形边长的倍等于小正方形边长的倍,所以大正方形的边长是小正方形边长的倍,大正方形的面积是小正方形面积的倍,所以小正方形面积为平方厘米,所以小正方形的边长为厘米,大正方形的边长为厘米,原长方形的长为厘米,宽为厘米。【例5】(希望杯培训题)如右图所示,在一个正方形上先截去宽分米的长方形,再截去宽分米的长方形,所得图形的面积比原正方形减少平方分米。原正方形的边长是______分米。实用文案标准文档【分析】把截去的两个长方形拼在一起,如右下图所示,再补上长分米、宽分米的小长方形,所得长方形的面积是平方分米,这个长方形的长等于原正方形的边长,宽为分米,所以原正方形边长为:分
5、米。巧求面积【例6】如图,一个矩形被分成八个小矩形,其中有五个矩形的面积如图中所示(单位:平方厘米),问大矩形的面积是多少平方厘米?【分析】通过分析题目中的已知条件可以看出,面积为平方厘米和面积为平方厘米的两个长方形的宽相等,即相等,不妨假设厘米,可以算得:厘米,厘米。于是可以算得:厘米,厘米,厘米。于是大长方形的长为厘米,宽为厘米,因此大长方形的面积为平方厘米。【例7】一块正方形的苗圃(如右图实线所示),若将它的边长各增加米(如图虚线所示),则面积增加平方米,问原来这块正方形苗圃的面积是多少平方米?【分析】小正方形的面积为:平方米。用增加的面积减去小正方形的面积就得到增加的
6、两个长方形的面积和,为:平方米。而增加的两个长方形的面积相等,于是其中一个长方形的面积为平方米。长方形的宽为米,那么长为:米,这就是原来这块正方形苗圃的边长,原来这块正方形苗圃的面积为(平方米)。实用文案标准文档【例8】长方形的周长是厘米,以这个长方形的每一条边为边长向外画正方形。已知这四个正方形的面积之和为平方厘米,那么长方形的面积是多少平方厘米?【分析】从图形我们可以看出,的长度恰好为长方形的长与宽之和,即为长方形周长的一半,可以看出若以和为边能构成大正方形(如右图所示),其中包含两个长方形和两个正方形,而且两个长方形的面积是相等的,两个正方形的面积刚好是平方厘米的一半。
7、这样我们容易求出:大正方形的边长为厘米,面积为:平方厘米,正方形与正方形的面积之和为:(平方厘米)。长方形与长方形的面积相等。所以,长方形的面积为:(平方厘米)。[巩固]用两块长方形纸片和一块正方形纸片拼成一个大正方形,长方形纸片面积分别为平方厘米与平方厘米,原正方形纸片面积是多少平方厘米?[分析]做辅助线,如右下图,小正方形Ⅰ的面积为,所以,,原正方形面积为(平方厘米)。【例9】如图,正方形的边长是,,分别是和的中点,求四边形的面积。【分析】如下图,利用割补法,原正方形面积等于个小正方形面积之和,所以
此文档下载收益归作者所有