高考文科数学导数专题复习教程

高考文科数学导数专题复习教程

ID:41355130

大小:82.66 KB

页数:10页

时间:2019-08-22

高考文科数学导数专题复习教程_第1页
高考文科数学导数专题复习教程_第2页
高考文科数学导数专题复习教程_第3页
高考文科数学导数专题复习教程_第4页
高考文科数学导数专题复习教程_第5页
资源描述:

《高考文科数学导数专题复习教程》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、高考文科数学导数专题复习第1讲 变化率与导数、导数的计算知识梳理1.导数的概念(1)函数y=f(x)在x=x0处的导数f′(x0)或y′

2、x=x0,即f′(x0)=.(2)函数f(x)的导函数f′(x)=为f(x)的导函数.2.导数的几何意义函数y=f(x)在点x0处的导数的几何意义,就是曲线y=f(x)在点P(x0,f(x0))处的切线的斜率,过点P的切线方程为y-y0=f′(x0)(x-x0).3.基本初等函数的导数公式4.导数的运算法则若f′(x),g′(x)存在,则有:考点一 导数的计算【例1】求下列函数的导数:(1)y=exlnx;(2)y=x;解 (1)y′=(ex

3、)′lnx+ex(lnx)′=exlnx+ex=ex.(2)因为y=x3+1+,所以y′=(x3)′+(1)′+′=3x2-.【训练1】(1)已知函数f(x)的导函数为f′(x),且满足f(x)=2x·f′(1)+lnx,则f′(1)等于(  )A.-eB.-1C.1D.e解析 由f(x)=2xf′(1)+lnx,得f′(x)=2f′(1)+,∴f′(1)=2f′(1)+1,则f′(1)=-1.答案 B(2)(2015·天津卷)已知函数f(x)=axlnx,x∈(0,+∞),其中a为实数,f′(x)为f(x)的导函数.若f′(1)=3,则a的值为________.(2)f′(x

4、)=a=a(1+lnx).由于f′(1)=a(1+ln1)=a,又f′(1)=3,所以a=3.答案  (2)3考点二 导数的几何意义命题角度一 求切线方程【例2】(2016·全国Ⅲ卷)已知f(x)为偶函数,当x≤0时,f(x)=e-x-1-x,则曲线y=f(x)在点(1,2)处的切线方程是________.解析 (1)设x>0,则-x<0,f(-x)=ex-1+x.又f(x)为偶函数,f(x)=f(-x)=ex-1+x,所以当x>0时,f(x)=ex-1+x.因此,当x>0时,f′(x)=ex-1+1,f′(1)=e0+1=2.则曲线y=f(x)在点(1,2)处的切线的斜率为f

5、′(1)=2,所以切线方程为y-2=2(x-1),即2x-y=0.答案 2x-y=0【训练2】(2017·威海质检)已知函数f(x)=xlnx,若直线l过点(0,-1),并且与曲线y=f(x)相切,则直线l的方程为(  )A.x+y-1=0B.x-y-1=0C.x+y+1=0D.x-y+1=0(2)∵点(0,-1)不在曲线f(x)=xlnx上,∴设切点为(x0,y0).又∵f′(x)=1+lnx,∴解得x0=1,y0=0.∴切点为(1,0),∴f′(1)=1+ln1=1.∴直线l的方程为y=x-1,即x-y-1=0.答案 B命题角度二 求切点坐标【例3】(2017·西安调研)设

6、曲线y=ex在点(0,1)处的切线与曲线y=(x>0)上点P处的切线垂直,则P的坐标为________.解析 由y′=ex,知曲线y=ex在点(0,1)处的切线斜率k1=e0=1.设P(m,n),又y=(x>0)的导数y′=-,曲线y=(x>0)在点P处的切线斜率k2=-.依题意k1k2=-1,所以m=1,从而n=1.则点P的坐标为(1,1).答案 (1,1)【训练3】若曲线y=xlnx上点P处的切线平行于直线2x-y+1=0,则点P的坐标是________.解析 (1)由题意得y′=lnx+x·=1+lnx,直线2x-y+1=0的斜率为2.设P(m,n),则1+lnm=2,解

7、得m=e,所以n=elne=e,即点P的坐标为(e,e).答案 (1)(e,e)命题角度三 求与切线有关的参数值(或范围)【例4】(2015·全国Ⅱ卷)已知曲线y=x+lnx在点(1,1)处的切线与曲线y=ax2+(a+2)x+1相切,则a=________.解析 由y=x+lnx,得y′=1+,得曲线在点(1,1)处的切线的斜率为k=y′

8、x=1=2,所以切线方程为y-1=2(x-1),即y=2x-1.又该切线与y=ax2+(a+2)x+1相切,消去y,得ax2+ax+2=0,∴a≠0且Δ=a2-8a=0,解得a=8.答案 8【训练4】1.函数f(x)=lnx+ax的图象存在

9、与直线2x-y=0平行的切线,则实数a的取值范围是________.函数f(x)=lnx+ax的图象存在与直线2x-y=0平行的切线,即f′(x)=2在(0,+∞)上有解,而f′(x)=+a,即+a在(0,+∞)上有解,a=2-,因为a>0,所以2-<2,所以a的取值范围是(-∞,2).答案 (2)(-∞,2)2.点P是曲线x2-y-lnx=0上的任意一点,则点P到直线y=x-2的最小距离为(  )A.1B.C.D.解析 点P是曲线y=x2-lnx上任意一点,当过点P的切线和直线y=x-2平

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。