Mininal Surfaces

Mininal Surfaces

ID:40085305

大小:621.99 KB

页数:38页

时间:2019-07-20

Mininal Surfaces_第1页
Mininal Surfaces_第2页
Mininal Surfaces_第3页
Mininal Surfaces_第4页
Mininal Surfaces_第5页
资源描述:

《Mininal Surfaces》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、Chapter2MinimalSurfacesSincethelastcentury,thenameminimalsurfaceshasbeenappliedtosurfacesofvanishingmeancurvature,becausetheconditionH=0willnecessarilybesatisfiedbysurfaceswhichminimizeareawithinagivenboundaryconfiguration.ThiswasimplicitlyprovedbyLagrangefornonpara-metricsurfacesin1760,andthenb

2、yMeusnierin1776whousedtheanalyticexpressionforthemeancurvatureanddeterminedtwominimalsurfaces,thecatenoidandthehelicoid.(ThenotionofmeancurvaturewasintroducedbyYoung[1]andLaplace[1],butusuallyitisascribedtoSophieGermain[1].)InSection2.1weshallderiveanexpressionforthefirstvariationofareawithresp

3、ecttogeneralvariationsofagivensurface.Fromthisexpressionweob-taintheequationH=0asnecessaryconditionforstationarysurfacesoftheareafunctional,andwealsodemonstratethatsolutionsofthefreeboundaryproblemmeettheirsupportingsurfacesatarightangle.InSection2.2,weparticularlyinvestigatenonparametricsurfa

4、ces,andwestatetheminimalsurfaceequationindivergenceandnondivergenceformwhichhastobesatisfiedbytheheightfunction.Finallyweprovethat,foranonparametricminimalsurfaceX,the1-formN∧dXisclosed.InSection2.3itisshownthatanonparametricminimalsurfaceX(x,y)=(x,y,z(x,y))hasarealanalyticheightfunctionz(x,y)a

5、nd,moreover,thatXcanbecon-formallymappedontosomeplanardomain.ThisconformalmappingcanbeconstructedexplicitlyifthedomainofdefinitionΩofthesurfaceXisconvex.ThereafterweproveinSection2.4thecelebratedBernsteintheoremfornonparametricminimalsurfacesandalsoaquantitativelocalversionofthistheoremwhichwas

6、discoveredbyE.Heinz.ThenweshowinSection2.5thateveryregularsurfaceX:Ω→R3satisfiestheequationΔXX=2HNU.Dierkes,S.Hildebrandt,F.Sauvigny,MinimalSurfaces,GrundlehrendermathematischenWissenschaften339,DOI10.1007/978-3-642-11698-82,cSpringer-VerlagBerlinHeidelberg201053542MinimalSurfacesand,therefore

7、,minimalsurfacesarecharacterizedbytheequationΔXX=0.IfXisgivenbyconformalparameters,thisrelationisequivalenttoΔX=0.ThisobservationisusedinSection2.6toenlargetheclassofminimalsur-faces.Wecannowadmitsurfaceswithisolatedsingularitiesbydefini

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。