欢迎来到天天文库
浏览记录
ID:36275182
大小:1.48 MB
页数:10页
时间:2019-05-08
《高三数学一轮复习必备精品36:空间向量及应用备注:【高三数学一轮复习必备精品共42讲全部免费欢迎下》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、实用文案第36讲空间向量及其应用备注:【高三数学一轮复习必备精品共42讲全部免费欢迎下载】一.【课标要求】(1)空间向量及其运算①经历向量及其运算由平面向空间推广的过程;②了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示;③掌握空间向量的线性运算及其坐标表示;④掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直。(2)空间向量的应用①理解直线的方向向量与平面的法向量;②能用向量语言表述线线、线面、面面的垂直、平行关系;③能用向量方法证明有关线、面位
2、置关系的一些定理(包括三垂线定理);④能用向量方法解决线线、线面、面面的夹角的计算问题,体会向量方法在研究几何问题中的作用二.【命题走向】本讲内容主要涉及空间向量的坐标及运算、空间向量的应用。本讲是立体几何的核心内容,高考对本讲的考察形式为:以客观题形式考察空间向量的概念和运算,结合主观题借助空间向量求夹角和距离预测2010年高考对本讲内容的考查将侧重于向量的应用,尤其是求夹角、求距离,教材上淡化了利用空间关系找角、找距离这方面的讲解,加大了向量的应用,因此作为立体几何解答题,用向量法处理角和距离将是主要方
3、法,在复习时应加大这方面的训练力度三.【要点精讲】1.空间向量的概念向量:在空间,我们把具有大小和方向的量叫做向量。如位移、速度、力等相等向量:长度相等且方向相同的向量叫做相等向量。表示方法:用有向线段表示,并且同向且等长的有向线段表示同一向量或相等的向量。说明:①由相等向量的概念可知,一个向量在空间平移到任何位置,仍与原来的向量相等,用同向且等长的有向线段表示;②平面向量仅限于研究同一平面内的平移,而空间向量研究的是空间的平移。2.向量运算和运算率加法交换率:加法结合率:数乘分配率:说明:①引导学生利用右
4、图验证加法交换率,然后推广到首尾相接的若干向量之和;②标准文档实用文案向量加法的平行四边形法则在空间仍成立3.平行向量(共线向量):如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量。平行于记作∥。注意:当我们说、共线时,对应的有向线段所在直线可能是同一直线,也可能是平行直线;当我们说、平行时,也具有同样的意义。共线向量定理:对空间任意两个向量(≠)、,∥的充要条件是存在实数使=注:⑴上述定理包含两个方面:①性质定理:若∥(≠0),则有=,其中是唯一确定的实数。②判断定理:
5、若存在唯一实数,使=(≠0),则有∥(若用此结论判断、所在直线平行,还需(或)上有一点不在(或)上)。⑵对于确定的和,=表示空间与平行或共线,长度为
6、
7、,当>0时与同向,当<0时与反向的所有向量⑶若直线l∥,,P为l上任一点,O为空间任一点,下面根据上述定理来推导的表达式。推论:如果 l为经过已知点A且平行于已知非零向量的直线,那么对任一点O,点P在直线l上的充要条件是存在实数t,满足等式①其中向量叫做直线l的方向向量在l上取,则①式可化为②当时,点P是线段AB的中点,则③①或②叫做空间直线的向量参数表示式
8、,③是线段AB的中点公式。注意:⑴表示式(﹡)、(﹡﹡)既是表示式①,②的基础,也是常用的直线参数方程的表示形式;⑵推论的用途:解决三点共线问题。⑶结合三角形法则记忆方程。4.向量与平面平行:如果表示向量的有向线段所在直线与平面平行或在平面内,我们就说向量平行于平面,记作∥。注意:向量∥与直线a∥的联系与区别。共面向量:我们把平行于同一平面的向量叫做共面向量共面向量定理如果两个向量、不共线,则向量与向量、共面的充要条件是存在实数对x、y,使①注:与共线向量定理一样,此定理包含性质和判定两个方面。推论:空间一
9、点P位于平面MAB内的充要条件是存在有序实数对x、y,使④或对空间任一定点O,有⑤标准文档实用文案在平面MAB内,点P对应的实数对(x,y)是唯一的。①式叫做平面MAB的向量表示式又∵代入⑤,整理得⑥由于对于空间任意一点P,只要满足等式④、⑤、⑥之一(它们只是形式不同的同一等式),点P就在平面MAB内;对于平面MAB内的任意一点P,都满足等式④、⑤、⑥,所以等式④、⑤、⑥都是由不共线的两个向量、(或不共线三点M、A、B)确定的空间平面的向量参数方程,也是M、A、B、P四点共面的充要条件5.空间向量基本定理:
10、如果三个向量、、不共面,那么对空间任一向量,存在一个唯一的有序实数组x,y,z,使说明:⑴由上述定理知,如果三个向量、、不共面,那么所有空间向量所组成的集合就是,这个集合可看作由向量、、生成的,所以我们把{,,}叫做空间的一个基底,,,都叫做基向量;⑵空间任意三个不共面向量都可以作为空间向量的一个基底;⑶一个基底是指一个向量组,一个基向量是指基底中的某一个向量,二者是相关联的不同的概念;⑷由于可视为与任意非零向量
此文档下载收益归作者所有