Ricci_flow_on_Kaehler_manifolds.pdf

Ricci_flow_on_Kaehler_manifolds.pdf

ID:34135379

大小:93.50 KB

页数:5页

时间:2019-03-03

Ricci_flow_on_Kaehler_manifolds.pdf_第1页
Ricci_flow_on_Kaehler_manifolds.pdf_第2页
Ricci_flow_on_Kaehler_manifolds.pdf_第3页
Ricci_flow_on_Kaehler_manifolds.pdf_第4页
Ricci_flow_on_Kaehler_manifolds.pdf_第5页
资源描述:

《Ricci_flow_on_Kaehler_manifolds.pdf》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、RicciflowonK¨ahlermanifoldsX.X.ChenandG.TianJuly,26,20001IntroductionandmaintheoremsInthelasttwodecades,theRicciflow,introducedbyR.Hamiltonin[7],hasbeenasubjectofintensestudy.TheRicciflowprovidesanindispensabletoolofdeformingRiemannianmetricstowardscanonicalme

2、trics,suchasEinsteinones.Itishopedthatbydeformingametrictoacanonicalmetric,onecanfurtherunderstandgeometricandtopologicalstructuresofunderlyingmanifolds.Forinstance,itwasproved[7]thatanyclosed3-manifoldofpositiveRiccicurvatureisdiffeomorphictoasphericalspace

3、form.Wereferthereadersto[10]formoreinformation.IftheunderlyingmanifoldisaK¨ahlermanifold,thenormalizedRicciflowinacanonicalK¨ahlerclass1preservestheK¨ahlerclass.ItfollowsthattheRicciflowcanbereducedtoafullynonlinearparabolicequationonalmostpluri-subharmonicfu

4、nctions:!n∂ϕω+∂∂ϕ¯=logdet+ϕ−hω,∂tωnwhereϕistheevolvedK¨ahlerpotential;andωisthefixedK¨ahlermetricinthecanonicalK¨ahlerclass,whileRic(ω)isthecorrespondingRicciformandZRic(ω)−ω=∂∂h¯,and(ehω−1)ωn=0.ωMarXiv:math/0010007v1[math.DG]2Oct2000Usually,thisreducedflow

5、iscalledtheK¨ahlerRicciflow.H.D.Cao[2]provedthattheK¨ahlerRicciflowalwayshasaglobalsolution.HealsoprovedthatthesolutionconvergestoaK¨ahler-EinsteinmetricifthefirstChernclassoftheunderlyingK¨ahlermanifoldiszeroornegative.Consequently,hereprovedthefamousCalabi-Y

6、autheorem[17].Ontheotherhand,ifthefirstChernclassoftheunderlyingK¨ahlermanifoldispositive,thesolutionofaK¨ahlerRicciflowmaynotconvergetoanyK¨ahler-Einsteinmetric.ThisisbecausetherearecompactK¨ahlermanifoldswithpositivefirstChernclasswhichdonotadmitanyK¨ahler-E

7、insteinmetrics(cf.[6],[15]).AnaturalandchallengingproblemiswhetherornottheK¨ahlerRicciflowonacompactK¨ahler-Einstein1AK¨ahlerclassiscanonicalifthefirstChernclassisproportionaltothisK¨ahlerclass.1manifoldconvergestoaK¨ahler-Einsteinmetric.ItwasprovedbyS.Bando[

8、1]for3-dimensionalK¨ahlermanifoldsandbyN.Mok[12]forhigherdimensionalK¨ahlermanifoldsthatthepositivityofbisectionalcurvatureispreservedundertheK¨ahlerRicciflow.AlongstandingprobleminthestudyoftheRicciflow

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
相关文章
更多
相关标签