九年级数学下册第1章直角三角形的边角关系复习教案新版北师大版

九年级数学下册第1章直角三角形的边角关系复习教案新版北师大版

ID:29595320

大小:333.56 KB

页数:7页

时间:2018-12-21

九年级数学下册第1章直角三角形的边角关系复习教案新版北师大版_第1页
九年级数学下册第1章直角三角形的边角关系复习教案新版北师大版_第2页
九年级数学下册第1章直角三角形的边角关系复习教案新版北师大版_第3页
九年级数学下册第1章直角三角形的边角关系复习教案新版北师大版_第4页
九年级数学下册第1章直角三角形的边角关系复习教案新版北师大版_第5页
资源描述:

《九年级数学下册第1章直角三角形的边角关系复习教案新版北师大版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第1章直角三角形的边角关系一、复习目标1.掌握锐角三角函数的概念和特殊角的三角函数值,并熟练运用于解直角三角形及与直角三角形有关的实际问题.2.将实际问题转化为数学问题,建立数学模型二、课时安排1课时三、复习重难点将实际问题转化为数学问题,建立数学模型四、教学过程(一)知识梳理(二)题型、方法归纳类型一 求三角函数值例1 在△ABC中,∠C=90°,sinA=,则tanB=(  )A.  B.  C.  D.[解析]B 根据sinA=,可设三角形的两边长分别为4k,5k,则第三边长为3k,所以tanB==.归纳:求三角函数值方法

2、较多,解法灵活,在具体的解题中要根据已知条件采取灵活的计算方法,常用的方法主要有:(1)根据特殊角的三角函数值求值;(2)直接运用三角函数的定义求值;(3)借助边的数量关系求值;(4)借助等角求值;(5)根据三角函数关系求值;(6)构造直角三角形求值.类型二 特殊角的三角函数值例2 计算:+tan60°+0.[解析]本题考查数的0次幂、分母有理化和特殊角的三角函数值.解:原式=++1=2+1.类型三 利用直角三角形解决和高度有关的问题例3 如图X1-1,在一次数学课外实践活动中,要求测教学楼AB的高度.小刚在D处用高1.5m的测

3、角仪CD,测得教学楼顶端A的仰角为30°,然后向教学楼前进40m到达EF,又测得教学楼顶端A的仰角为60°.求这幢教学楼AB的高度.[解析]设CF与AB交于点G,在Rt△AFG中,用AG表示出FG,在Rt△ACG中,用AG表示出CG,然后根据CG-FG=40,可求AG.解:设CF与AB交于点G,在Rt△AFG中,tan∠AFG=,∴FG==.在Rt△ACG中,tan∠ACG=,∴CG==AG.又CG-FG=40,即AG-=40,∴AG=20,∴AB=(20+1.5)m.答:这幢教学楼AB的高度为(20+1.5)m.归纳;在生活实

4、际中,特别在勘探、测量工作中,常需了解或确定某种大型建筑物的高度或不能用尺直接量出的两地之间的距离等,而这些问题一般都要通过严密的计算才可能得到答案,并且需要先想方设法利用一些简单的测量工具,如:皮尺,测角仪,木尺等测量出一些重要的数据,方可计算得到.有关设计的原理就是来源于太阳光或灯光与影子的关系和解直角三角形的有关知识.类型四 利用直角三角形解决平面图形中的距离问题例4 为建设“宜居宜业宜游”山水园林式城市,内江市正在对城区沱江河段进行区域性景观打造,某施工单位为测得某河段的宽度,测量员先在河对岸岸边取一点A,再在河这边沿河

5、边取两点B,C,在B处测得点A在北偏东30°方向上,在点C处测得点A在西北方向上,量得BC长为200米.求小河的宽度(结果保留根号).[解析]过点A作AD⊥BC于点D,根据∠CAD=45°,可得BD=BC-CD=200-AD.在Rt△ABD中,根据tan∠ABD=,可得AD=BD·tan∠ABD=(200-AD)·tan60°=(200-AD),列方程AD+AD=200,解出AD即可.(三)典例精讲如图X1-J-5,一条输电线路从A地到B地需要经过C地,图中AC=20km,∠CAB=30°,∠CBA=45°,因线路整改需要,将从

6、A地到B地之间铺设一条笔直的输电线路.(1)求新铺设的输电线路AB的长度;(结果保留根号)(2)问整改后从A地到B地的输电线路比原来缩短了多少千米.(结果保留根号)解:(1)如答图X1-J-2,过点C作CD⊥AB,交AB于点D.在Rt△ACD中,答:新铺设的输电线路AB的长度为km.(四)归纳小结1、本节例题学习以后,我们可以得到解直角三角形的两种基本图形:2.(1)把实际问题转化成数学问题,这个转化为两个方面:一是将实际问题的图形转化为几何图形,画出正确的平面或截面示意图,二是将已知条件转化为示意图中的边、角或它们之间的关系.

7、(2)把数学问题转化成解直角三角形问题,如果示意图不是直角三角形,可添加适当的辅助线,画出直角三角形.(五)随堂检测1.在Rt△ABC中,∠C=90°,AB=2,BC=,则tan=。2.等腰三角形底角为30°,底边长为,则腰长为()A.4B.C.2D.3.如图所示,Rt△ABC中,∠C=90°,AC=BC,点D在AC上,∠CBD=30°,则AD/DC的值为()A.B.C.D.不能确定4.在△ABC中,∠C=90°,若BC=4cm,sinA=,则AC的长是()A.6cmB.cmC.cmD.cm5.如图所示,在Rt△ABC中,∠AC

8、B=90°,CD⊥AB于D,cosA=,BD=8,则AC=()A.15B.16C.18D.6.如图所示,某地下车库的入口处有斜坡AB,其坡度i=1∶1.5,且AB=m.7、一艘船由A港沿北偏东600方向航行10km至B港,然后再沿北偏西300方向10km方向至C

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。