欢迎来到天天文库
浏览记录
ID:28894091
大小:369.50 KB
页数:7页
时间:2018-12-14
《2018中考数学总复习专题八阅读理解试题》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、阅读理解1.(2017·威海)阅读理解:如图1,⊙O与直线a,b都相切.不论⊙O如何转动,直线a,b之间的距离始终保持不变(等于⊙O的直径).我们把具有这一特性的图形称为“等宽曲线”.图2是利用圆的这一特性的例子.将等直径的圆棍放在物体下面,通过圆棍滚动,用较小的力就可以推动物体前进.据说,古埃及人就是利用这样的方法将巨石推到金字塔顶的.图1 图2拓展应用:如图3所示的弧三角形(也称为莱洛三角形)也是“等宽曲线”.如图4,夹在平行线c,d之间的莱洛三角形无论怎么滚动,平行线间的距离始终不变.若直线c,d之间的距离等于2cm,则莱洛三角形的周长
2、为________cm.图3 图42.(2017·枣庄)我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解,并规定:F(n)=.例如12可以分解成1×12,2×6或3×4,因为12-1>6-2>4-3,所以3×4是12的最佳分解,所以F(12)=.(1)如果一个正整数m是另外一个正整数n的平方,我们称正整数m是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤
3、y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数t为“吉祥数”,求所有“吉祥数”;(3)在(2)所得“吉祥数”中,求F(t)的最大值.3.阅读材料:在一个三角形中,各边和它所对角的正弦的比相等,==.利用上述结论可以求解如下题目:在△ABC中,∠A、∠B、∠C的对边分别为a,b,c.若∠A=45°,∠B=30°,a=6,求b.解:在△ABC中,∵=,∴b====3.理解应用:如图,甲船以每小时30海里的速度向正北方向航行,当甲船位于A1处时,乙船位于甲船的北偏西105°方向的B1处,且乙船
4、从B1处按北偏东15°方向匀速直线航行,当甲船航行20分钟到达A2时,乙船航行到甲船的北偏西120°方向的B2处,此时两船相距10海里.(1)判断△A1A2B2的形状,并给出证明;(2)乙船每小时航行多少海里?4.(2017·临沂)数学课上,张老师出示了问题:如图1,AC,BD是四边形ABCD的对角线,若∠ACB=∠ACD=∠ABD=∠ADB=60°,则线段BC,CD,AC三者之间有何等量关系?经过思考,小明展示了一种正确的思路:如图2,延长CB到E,使BE=CD,连接AE.证得△ABE≌△ADC,从而容易证明△ACE是等边三角形.故AC=CE,所以AC=
5、BC+CD.图1 图2 图3小亮展示了另一种正确的思路:如图3,将△ABC绕着点A逆时针旋转60°,使AB与AD重合,从而容易证明△ACF是等边三角形,故AC=CF,所以AC=BC+CD.在此基础上,同学们做了进一步的研究:(1)小颖提出:如图4,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改为“∠ACB=∠ACD=∠ABD=∠ADB=45°”,其他条件不变,那么线段BC,CD,AC三者之间有何等量关系?针对小颖提出的问题,请你写出结论,并给出证明. 图4 图5(2)小华提出:如图5,如果把
6、“∠ACB=∠ACD=∠ABD=∠ADB=60°”改为“∠ACB=∠ACD=∠ABD=∠ADB=α”,其他条件不变,那么线段BC,CD,AC三者之间有何等量关系?针对小华提出的问题,请你写出结论,不用证明.5.(2017·济宁)定义:点P是△ABC内部或边上的点(顶点除外),在△PAB,△PBC,△PCA中,若至少有一个三角形与△ABC相似,则称点P是△ABC的自相似点.图1例如:如图1,点P在△ABC的内部,∠PBC=∠A,∠BCP=∠ABC,则△BCP∽△ABC,故点P是△ABC的自相似点.请你运用所学知识,结合上述材料,解决下列问题:在平面直角坐标系
7、中,点M是曲线y=(x>0)上的任意一点,点N是x轴正半轴上的任意一点.(1)如图2,点P是OM上一点,∠ONP=∠M,试说明点P是△MON的自相似点;当点M的坐标是(,3),点N的坐标是(,0)时,求点P的坐标;图2图3(2)如图3,当点M的坐标是(3,),点N的坐标是(2,0)时,求△MON的自相似点的坐标;(3)是否存在点M和点N,使△MON无自相似点?若存在,请直接写出这两点的坐标;若不存在,请说明理由.参考答案1.2π 2.(1)证明:对任意一个完全平方数m,设m=n2(n为正整数).∵
8、n-n
9、=0为最小,∴n×n是m的最佳分解.∴对任意一个完
10、全平方数m,总有F(m)==1.(2)解:设交换t的个位上的数与十
此文档下载收益归作者所有