欢迎来到天天文库
浏览记录
ID:27845546
大小:201.50 KB
页数:12页
时间:2018-12-06
《人类对人工智能7大误解分析.doc》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、人类对人工智能7大误解分析 这些人工智能的宣传应该会引发你对以下两个问题的思考—— 人工智能到底有没有商业潜力? 怎么把人工智能应用到自己的工作当中? 第一个问题的答案毋容置疑是肯定的。今天的商业已经可以应用人工智能代替人类完成一些工作,人工智能还可以在人力工作上增加上百倍效力,成本却减少到了原来的90%。 第二个问题的答案可能需要更长一些。首先,我们必须破除一些主流媒体的宣传所产生的有关人工智能的谣传。一旦我们粉碎了这些谣言,我们就可以很清晰地了解如何有效的把人工智能应用到自己的工作当中。
2、 误解1 人工智能是魔法 许多媒体都把人工智能描绘的魔幻而神秘,我们只能在一旁为那些像伟大的魔术师一样的科技巨头公司欢呼庆祝,如谷歌、Facebook、苹果、亚马逊和微软等。但其实这样的宣传是不对的。我们要想人工智能应用到商业中,至少要让公司的执行者和决策者理解它。人工智能不是魔法,它是数据、数学、模式与迭代。在将人工智能应用到商业前,我们必须了解清楚人工智能的3个相互关联的关键概念: 训练数据(TrainingData,TD) 训练数据是机器学习所用的原始数据集。训练数据有一些输入和预设的
3、输出,所以机器学习模型能对任何一个给定的输出寻找其中的模式。举个例子,输入信息可以是客户和客户与公司代表之间的邮件。输出是从1到5的分类标签,这些标签可以根据公司内部的需要来制定。 机器学习(MachineLearning,ML) 机器学习是一种能从训练数据当中学习模型的一种软件,它还能把这些模型运用到新的输入数据上。举例来说,一封新的邮件从客户发送给公司代表。机器学习模型可以预测邮件的分类,并且说明预测的准确率。机器学习的关键特点是它可以学习而不是应用固定的规则,它可以消化新的数据来调整它的方法
4、。 人机回圈(Human-in-the-loop,HITL) 人机回圈是人工智能的第三个核心,我们不能指望机器学习模型从不出错。一个好的模型大概只有70%的准确率,所以当置信率太低的时候你需要人为介入去解决问题。 因此,请不要被人工智能是魔法的谣言所欺骗,在此基础上,你可以心中有一个人工智能的核心公式—— AI=TD+ML+HITL 误解2 人工智能属于少数人 媒体经常暗示,只有亚马逊、苹果、Facebook、谷歌、IBM、微软、Salesforce、Tesla和Uber这样的科技巨
5、头才能主导人工智能,因为这些大公司能组建大型的机器学习专家团队以及投资1亿美元进行相关的研发。但这样的说法是错误的。 今天,花费不到10万美元去应用人工智能是十分现实的。如果你是年收入超过5千万美元的美国公司的一员,那么你只用花费0.2%的年收入就可以应用人工智能,而这样的公司在美国达到了26000家。 所以,人工智能不是专属科技巨头,它对每一个行业都适用的。 误解3 人工智能要用来解决大问题 媒体们总是爱讲把人工智能应用在自动驾驶汽车或者自动送货无人机这样的大项目上。由于赢家通吃的心理
6、,像谷歌、Tesla和Uber这样的公司正将数亿美元投资在无人驾驶汽车这样的领域。这种宣传很容易让人们产生人工智能只是为了解决数十亿美元问题的印象,但这是一种错误的想法。 人工智能也可以解决百万美元级别的问题。举例来说,任何一个行业最核心的都是了解顾客,这一点对古希腊和古罗马在集市进行交易的人们适用,对今天在互联网进行大规模交易的人们来说也是适用的。对于企业来说,顾客的使用数据和反馈是一座巨大的宝藏。人工智能正是处理这些数据和反馈的有效方法。 所以,人工智能不仅仅是解决像无人驾驶这样的新问题,它也
7、是能解决百万美元级别的实际需求,比如它就可以用在更好地理解用户意见和社交媒体的反馈分析上面。 误解4 算法比数据更重要 主流传媒经常报道机器学习的算法是人工智能所有要素中最重要的一环,他们常常把算法比作是人类的大脑,而且他们认为越来越精密的算法将终究超过人类的头脑。国际象棋与围棋正是机器打败人类例子。媒体尤其关注深度神经网络和深度学习,以及机器做决策的方式。 这样的报道可能会让打算使用人工智能的公司认为找一些机器学习的专家来制定完美的算法是最重要的。但是,如果一个公司仅仅找了算法专家,而没
8、有配套的高质量、大容量的定制训练数据的话,期望往往就会和最终的结果产生巨大的偏差(有完美的算法但是只有60%的正确率)。 例如,从微软、亚马逊、谷歌这样的公司购买机器学习服务而却不打算对训练数据进行投资,就好比买一辆车却从不去加油站一样,你只是花钱买了一堆废铁。另外和汽车加油不同的一点是,用越来越多的训练数据可以得到越来越好训练结果,就好比汽车每加一次油他的油耗就变得更少一样。所以说,训练数据对于人工智能的作用是比汽油对于汽车的作用更大的。 总结为一
此文档下载收益归作者所有